
Data Augmentation for Traffic
Classification

Chao Wang1,2 , Alessandro Finamore1(B) , Pietro Michiardi2 ,
Massimo Gallo1 , and Dario Rossi1

1 Huawei Technologies SASU, Boulogne-Billancourt, France
alessandro.finamore@huawei.com

2 EURECOM, Biot Sophia Antipolis, France

Abstract. Data Augmentation (DA)—enriching training data by
adding synthetic samples—is a technique widely adopted in Computer
Vision (CV) and Natural Language Processing (NLP) tasks to improve
models performance. Yet, DA has struggled to gain traction in network-
ing contexts, particularly in Traffic Classification (TC) tasks. In this
work, we fulfill this gap by benchmarking 18 augmentation functions
applied to 3 TC datasets using packet time series as input representa-
tion and considering a variety of training conditions. Our results show
that (i) DA can reap benefits previously unexplored, (ii) augmentations
acting on time series sequence order and masking are better suited for
TC than amplitude augmentations and (iii) basic models latent space
analysis can help understanding the positive/negative effects of augmen-
tations on classification performance.

1 Introduction

Network monitoring is at the core of network operations with Traffic Clas-
sification (TC) being key for traffic management. Traditional Deep Packet
Inspection (DPI) techniques, i.e., classifying traffic with rules related to pack-
ets content, is nowadays more and more challenged by the growth in adoption
of TLS/DNSSEC/HTTPS. Despite the quest for alternative solutions to DPI
already sparked about two decades ago with the first Machine Learning (ML)
models based on packet and flow features, a renewed thrust in addressing TC
via data-driven modeling is fueled today by the rise of Deep Learning (DL),
with abundant TC literature, periodically surveyed [29,34], reusing/adapting
Computer Vision (CV) training algorithms and model architectures.

Despite the existing literature, we argue that opportunities laying in the data
itself are still unexplored based on three observations. First, CV and Natural Lan-
guage Processing (NLP) methods usually leverage “cheap” Data Augmentation
(DA) strategies (e.g., image rotation or synonym replacement) to complement
training data by increasing samples variety. Empirical studies show that this
leads to improved classification accuracy. Yet to the best of our knowledge, only
a handful of TC studies considered DA [20,32,46] and multiple aspects of DA
design space remain unexplored. Second, network traffic datasets are imbalanced
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Richter et al. (Eds.): PAM 2024, LNCS 14537, pp. 159–186, 2024.
https://doi.org/10.1007/978-3-031-56249-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56249-5_7&domain=pdf
http://orcid.org/0009-0003-5721-5221
http://orcid.org/0000-0003-2226-2506
http://orcid.org/0000-0003-4675-7677
http://orcid.org/0000-0001-8781-0775
http://orcid.org/0000-0003-3936-8876
https://doi.org/10.1007/978-3-031-56249-5_7

160 C. Wang et al.

due to the natural skew of app/service popularity and traffic dynamics. In turn,
this calls for training strategies emphasizing classification performance improve-
ment for classes with fewer samples. However, the interplay between imbalance
and model performance is typically ignored in TC literature. Last, the pursuit
of better model generalization and robustness necessitates large-scale datasets
with high-quality labeling resulting in expensive data collection processes. In this
context, the extent to which DA can alleviate this burden remains unexplored.

In this paper, we fill these gaps by providing a comprehensive evaluation
of “hand-crafted” augmentations—transformations designed based on domain
knowledge—applied to packets time series typically used as input in TC. Given
the broad design space, we defined research goals across multiple dimensions.
First of all, we selected a large pool of 18 augmentations across 3 families
(amplitude, masking, and sequence) which we benchmark both when used in
isolation as well as when multiple augmentations are combined (e.g., via stack-
ing or ensembling). Augmentations are combined with original training data
via different batching policies (e.g., replacing training data with augmentation,
adding augmented data to each training step, or pre-augmenting the dataset
before training). We also included scenarios where imbalanced datasets are re-
balanced during training to give more importance to minority classes. Last, we
dissected augmentations performance by exploring their geometry in the classi-
fiers latent space to pinpoint root causes driving performance. Our experimental
campaigns were carried over 2 mid-sized public datasets, namely MIRAGE-19 and
MIRAGE-22 (up to 20 classes, 64k flows), and a larger private dataset (100 classes,
2.9M flows). We summarize our major findings as follows:

– We confirm that augmentations improve performance (up to +4.4% weighted
F1) and expanding training batches during training (i.e., the Injection policy)
is the most effective policy to introduce augmentations. Yet, improvements
are dataset dependent and not necessarily linearly related to dataset size or
number of classes to model;

– Sequence ordering and masking are more effective augmentation families for
TC tasks. Yet, no single augmentation is found consistently superior across
datasets, nor domain knowledge suffice to craft effective augmentations, i.e.,
the quest for effective augmentations is an intrinsic trial-and-error process;

– Effective augmentations introduce good sample variety, i.e., they synthesize
samples that are neither too close nor too far from the original training data.

To the best of our knowledge, a broad and systematic study of hand-crafted
DA techniques in TC as the one performed in our study is unprecedented. Ulti-
mately, our analysis confirms that DA is currently suffering from a single pain
point—exploring the design space via brute force. However, our results suggest a
possible road map to achieve better augmentations via generative models which
might render obsolete the use of brute force.

In the remainder, we start by introducing DA basic concepts and reviewing rel-
evant ML and TC literature (Sect. 2). We then introduce and discuss our research
goals (Sect. 3) and the experimental setting used to address them (Sect. 4). Last,
we present our results (Sect. 5) before closing with final remarks (Sect. 6).

Data Augmentation for Traffic Classification 161

2 Background and Related Work

Data augmentation consists in adding synthetic samples (typically derived from
real ones) to the training set to increase its variety. DA has been popularized
across many ML disciplines [26,36,44] with a large number of variants which
we can be broadly grouped into two categories [26]: hand-crafted DA and data
synthesis. Hand-crafted DA (also known as data transformations) involves creat-
ing new samples by applying predefined rules to existing samples. Instead, data
synthesis relates to generating new samples via generative models, e.g., Varia-
tional AutoEncoders (VAE), Generative Adversarial Neural networks (GAN),
Diffusion Models (DM), etc., trained on existing and typically large datasets.

In this section, we overview the existing DA literature with an emphasis on
hand-crafted DA and methods closer to the scope of our work. We begin by intro-
ducing relevant CV and time series ML literature. Then, we review TC literature
using DA and close with a discussion about general design principles/require-
ments that we used for defining our research goals outlined in Sect. 3.

2.1 Data Augmentation in Traditional Machine Learning Tasks

To ground the discussion of different methods merits, we start by revisiting the
internal mechanisms of supervised ML/DL models.

Supervised Modeling and DA. In a nutshell, a supervised model is a func-
tion ϕ : x ∈ X → y ∈ Y mapping an input x to its label y. Training such models
corresponds to discover a good function ϕ(·) based on a training set. When per-
forming DA, the training set is enlarged by adding new samples x′ = Aug(x)
created by altering original samples x—these transformations act directly in the
input space X and the additional synthetic samples contribute in defining ϕ(·) as
much as the original ones. It follows that having a comprehensive understanding
of samples/classes properties and their contribution to models training is bene-
ficial for designing effective augmentations, i.e., transformations enabling higher
classification performance.

Beside operating in the input space, DL models offer also a latent space. In
fact, DL models are typically a composition of two functions ϕ(xi) = h(f(xi)) =
yi: a feature extractor f(·) and a classifier h(·), normally a single fully connected
layer (i.e., a linear classifier) in TC. In other words, an input sample f(xi) = zi is
first projected into an intermediate space, namely the latent space, where differ-
ent classes are expected to occupy different regions. The better such separation,
the easier is for the classifier h(zi) = yi to identify the correct label. It fol-
lows that this design enables a second form of augmentations based on altering
samples in the latent space rather than in the input space.

Last, differently from DA, generative models aims to learn the training set
data distribution. In this way generating new synthetic data corresponds to
sampling from the learned distribution. In the following we expand on each of
these three methodologies.

162 C. Wang et al.

Input Space Transformations. In traditional ML, Synthetic Minority Over-
sampling TEchnique (SMOTE) [7] is a popular augmentation technique. This
approach generates new samples by interpolating the nearest neighbors of a given
training sample. To address class imbalance, SMOTE is often employed with a
sampling mechanism that prioritizes minority classes [16,17].

In CV, several image transformations have been proposed to improve samples
variety while preserving classes semantics. These transformations operate on col-
ors (e.g., contrast and brightness changes, gray scaling) and geometry (e.g., rota-
tion, flipping, and zooming), or via filters (e.g., blurring with Gaussian kernel)
and masks (e.g., randomly set to zero a patch of pixels). Furthermore, transfor-
mations like CutMix [51] and Mixup [52] not only increase samples variety but
also increase classes variety by creating synthetic classes from a linear combina-
tion of existing ones. The rationale behind this approach is that by introducing
new artificial classes sharing similarities with the true classes the classification
task becomes intentionally more complex, thereby pushing the training process
to extract better data representations. Empirical validations of DA techniques
in CV have consistently demonstrated their effectiveness across a diverse range
of datasets, tasks, and training paradigms [8,18,31]. As a result, DA has become
a ubiquitous component in the CV models training pipelines.

Considering time series instead, input transformations can either modify
data amplitude (e.g., additive Gaussian noise) or manipulate time (e.g., com-
posing new time series by combining different segments of existing ones). Simi-
larly to CV, the research community has provided empirical evidence supporting
the effectiveness of these transformations in biobehavioral [47] and health [49]
domains. However, contrarily to CV, these transformations are less diverse and
have been less widely adopted, possibly due to the stronger reliance on domain
knowledge—an amplitude change on an electrocardiogram can be more difficult
to properly tune compared to simply rotating an image.

Latent Space Transformations. Differently from traditional ML, DL models
offer the ability to shape the feature extractor to create more “abstract” features.
For example, Implicit Semantic Data Augmentation (ISDA) [42] first computes
class-conditional covariance matrices based on intra-class feature variety; then,
it augments features by translating real features along random directions sam-
pled from a Gaussian distribution defined by the class-conditional covariance
matrix. To avoid computational inefficiencies caused by explicitly augmenting
each sample many times, ISDA computes an upper bound of the expected cross
entropy loss on an enlarged feature set and takes this upper bound as the new loss
function. Based on ISDA, and focused on data imbalance, Sample-Adaptive Fea-
ture Augmentation (SAFA) [19] extracts transferable features from the majority
classes and translates features from the minority classes in accordance with the
extracted semantic directions for augmentation.

Generative Models. In addition to traditional hand-crafted data augmenta-
tion techniques, generative models offer an alternative solution to generate sam-
ples variety. For instance, [6,40] use a multi-modal diffusion model trained on an
Internet-scale dataset composed of (image, text) pairs. Then, the model is used

Data Augmentation for Traffic Classification 163

to synthesize new samples—text prompts tailored to specific downstream classi-
fication tasks are used as conditioning signal to create task-specific samples—to
enlarge the training set for a classification task. While these types of generative
models can provide high-quality samples variety, their design and application
still requires a considerable amount of domain knowledge to be effective.

2.2 Data Augmentation in Traffic Classification

TC tasks usually rely on either packet time series (e.g., packet size, direction,
Inter Arrival Time (IAT), etc., of the first 10–30 packets of a flow) or payload
bytes (e.g., the first 784 bytes of a flow, possibly gathered by concatenating
payload across different packets) arranged as 2d matrices. Recent literature also
considers combining both input types into multi-modal architectures [2,4,24].

Such input representations and datasets exhibit three notable distinctions
when compared to data from other ML/DL disciplines. First, TC datasets show
significant class imbalance—this is a “native” property of network traffic as
different applications enjoy different popularity and traffic dynamics while, for
instance, many CV datasets are balanced. Second, TC input representation is
typically “small” to adhere to desirable system design properties—network traf-
fic should be (i) early classified, i.e., the application associated to a flow should
be identified within the first few packets of a flow, and (ii) computational/mem-
ory resources required to represent a flow should be minimal as an in-network
TC systems need to cope with hundreds of thousands of flow per second. Last,
TC input data has weak semantics—the underlying application protocols (which
may or not be known a priori) may not be easy to interpret even for domain
experts when visually inspecting packet time series.

Hand-crafted DA. The combination of the above observations leads to have
only a handful of studies adopting DA in TC. Rezaei et al. [32] created synthetic
input samples by means of three hand-crafted DA strategies based on sampling
multiple short sequences across the duration of a complete flow. Horowicz et
al. [20] instead focused on a flowpic input representation—a 2d summary of
the evolution of packets size throughout the duration of a flow—augmented by
first altering the time series collected from the first 15 s of a flow and used to
compute the flowpic. While both studies show the benefit of DA, these strategies
violate the early classification principle as they both consider multiple seconds
of traffic, thus they are better suited for post-mortem analysis only. Conversely,
Xie et al. [1,46] recently proposed some packet series hand-crafted DA to tackle
data shifts arising when applying a model on network traffic gathered from
networks different from the ones used to collect the training dataset. Specifically,
inspired by TCP protocol dynamics, authors proposed five packets time series
augmentations (e.g., to mimic a packet lost/retransmission one can replicate a
value at a later position in the time series) showing that they help to mitigate
data shifts. Yet, differently from [20,32], the study in [46] lacks from an ablation
of each individual augmentation’s performance.

164 C. Wang et al.

Generative Models. Last, [41,43,48] investigate augmentations based on GAN
methods when using payload bytes as input for intrusion detection scenarios, i.e.,
a very special case of TC where the classification task is binary. More recently,
[22] compared GAN and diffusion model for generating raw payload bytes traces
while [37,38] instead leveraged GAN or diffusion models to generate 2D repre-
sentations (namely GASF) of longer traffic flow signals for downstream traffic
fingerprinting, anomaly detection, and TC.

2.3 Design Space

Search Space. Independently from the methodology and application discipline,
DA performance can only be assessed via empirical studies, i.e., results are bound
to the scenarios and the datasets used. Moreover, to find an efficient strategy one
should consider an array of options, each likely subject to a different parametriza-
tion. In the case of hand-crafted DA, one can also opt for using stacking (i.e.,
applying a sequence of transformations) or ensembling (i.e., applying augmenta-
tions by selecting from a pool of candidates according to some sampling logic)—
an exhaustive grid search is unfeasible given the large search space. Besides
following guidelines to reduce the number of options [10], some studies suggest
the use of reinforcement learning to guide the search space exploration [9]. Yet,
no standard practice has emerged.

Quantifying Good Variety. As observed in TC literature [20,32,46], domain
knowledge is key to design efficient augmentations. Yet, ingenuity might not be
enough as models are commonly used as “black boxes”, making it extremely
challenging to establish a direct link between an augmentation technique and
its impact on the final classification performance. For instance, rotation is con-
sidered a good image transformation as result of empirical studies. Likewise,
generative models are trained on large image datasets but without an explicit
connection to a classification task [33]—the design of the augmentation method
itself is part of a trial-and-error approach and the definition of metrics quanti-
fying the augmentation quality is still an open question.

One of the aspects to be considered when formulating such metrics is the
variety introduced by the augmentations. Gontijo-Lopes et al. [11] propose met-
rics quantifying the distribution shift and diversity introduced by DA contrasting
models performance with and without augmentations. Other literature instead
focuses on mechanisms that can help defining desirable properties for augmen-
tations. For instance, from the feature learning literature, [35,53] find that DA
induces models to better learn rare/less popular but good features by altering
their importance, thus improving model generalization performance. Samyak et
al. [21] find that optimization trajectories are different when training on different
augmentations and propose to aggregate the weights of models trained on dif-
ferent augmentations to obtain a more uniform distribution of feature patches,
encouraging the learning of diverse and robust features.

Data Augmentation for Traffic Classification 165

Training Loss. Self-supervision and contrastive learning are DL training strate-
gies that take advantage of augmentations by design. In a nutshell, contrastive
learning consists of a 2-steps training process. First, a feature extractor is trained
in a self-supervised manner with a contrastive loss function that pulls together
different augmented “views” of a given sample while distancing them from views
of other samples. Then, a classifier head is trained on top of the learned repre-
sentation in a supervised manner using a few labeled samples—the better the
feature representation, the lower the number of labeled samples required for
training the head. Empirical studies have demonstrated the robustness of the
feature representations learned with contrastive learning [8,13,30,50] and a few
recent studies investigated contrastive learning also in TC [15,20,39,46].

Linking Generative Models to Classifiers. When we consider the specific
case of using generative models to augment training data, we face a major
challenge—generative models are not designed to target a specific downstream
task [37,38,43]. While studies like [28] integrated a classifier in GAN training
in the pursuit of improving the reliability the model, how to properly link and
train a generative model to be sensitive to a downstream classification task is
still an open question even in CV literature.

3 Our Goals and Methodology

Drawing insights from the literature reviewed in Sect. 2, we undertake a set of
empirical campaigns to better understand hand-crafted DA when applied in the
input space for TC task and address the following research goals:

G1. How to compare the performance of different augmentations? This includes
investigating augmentations sensitivity to their hyper-parametrization and
dataset properties (e.g., number of samples and classes).

G2. How augmented samples should be added to the training set and how
many samples should be added? Is augmenting minority classes beneficial
to mitigate class imbalance?

G3. Why some augmentations are more effective than others?
G4. Does combining multiple augmentations provide extra performance

improvement?

In the remainder of this section, we motivate each goal and introduce the
methodology we adopted to address them.

166 C. Wang et al.

Fig. 1. Input sample x shape and related notation.

Table 1. Amplitude augmentations.

Table 2. Masking augmentations

Data Augmentation for Traffic Classification 167

Table 3. Sequence order augmentations.

3.1 Benchmarking Hand-Crafted DA (G1)

Figure 1 sketches a typical TC input x, i.e., a multivariate time series with D
dimensions (one for each packet feature) each having T values (one for each
packet) while x(d,t) is the value of x at coordinates (d, t) where d ∈ {0..D − 1}
and t ∈ {0..T −1}. In particular, in this work, we consider D = 3 packet features,
namely packet size, direction, and Inter Arrival Time (IAT), and the first T = 20
packets of a flow. We also define x′ = Aug(x, α) as an augmentation, i.e., the

168 C. Wang et al.

transformation x′ of sample x is subject to a magnitude α ∈]0, 1[controlling the
intensity of the transformation (1 = maximum modification).

Augmentations Pool. In this study, we considered a set A of 18 augmenta-
tion functions. These functions can be categorized into 3 families: 5 amplitude
transformations, which introduce different type of jittering to the feature values
(Table 1); 2 masking transformations, which force certain feature values to zero
(Table 2); and 11 sequence transformations, which modify the order of feature
values (Table 3). It is important to note that, given a sample x, amplitude aug-
mentations are solely applied to either packet size or IAT while packet direction
is never altered since the latter is a binary feature and does not have amplitude
(i.e., it can be −1 or 1). On the contrary, masking and sequence augmenta-
tions are applied to all features in parallel (e.g., if a transformation requires to
swap t = 1 with t = 6, all features are swapped accordingly x(i,1) ↔ x(i,6) for
∀i ∈ {0..D − 1}). For each augmentation, Tables 1-3 report a reference example
annotating its parametrization (if any).

By adopting such a large pool of augmentations our empirical campaign
offers several advantages. First, we are able to investigate a broader range of
design possibilities compared to previous studies. Second, it enables us to con-
trast different families and assess if any of them is more prone to disrupt class
semantics. Considering the latter, TC literature [20,32,46] predominantly inves-
tigate sequence transformations (typically acting only on packet timestamp)
with only [46] experimenting with masking and amplitude variation, yet target-
ing scenarios where models are exposed to data shifts due to maximum segment
size (MSS) changes, i.e., the network properties related to the training set are
different from the ones of the test set.

Augmentations Magnitude. As described in Tables 1-3, each augmentation
has some predefined static parameters1 while the magnitude α is the single
hyper-parameter controlling random sampling mechanisms contributing to defin-
ing the final transformed samples. To quantify augmentations sensitivity to α, we
contrast two scenarios following CV literature practice: a static value of α = 0.5
and a uniformly sampled value α ∼ U [0, 1] extracted for each augmented sample.

Datasets Size and Task Complexity. Supervised tasks, especially when mod-
eled via DL, benefit from large datasets. For instance, as previously mentioned,
some CV literature pretrains generative models on large datasets and use those
models to obtain auxiliary training data for classification tasks. While data avail-
ability clearly plays a role, at the same time the task complexity is equivalently
important—a task with just a few classes but a lot of data does not necessarily
yield higher accuracy than a task with more classes and less data. To understand
how augmentations interplay with these dynamics, it is relevant to evaluate aug-
mentations across datasets of different sizes and number of classes.

1 These parameters are tuned via preliminary investigations.

Data Augmentation for Traffic Classification 169

Fig. 2. Training batch creation policies.

3.2 Training Batches Composition (G2)

In order to mitigate any undesirable shifts introduced by artificial samples, it is
necessary to balance original and augmented samples. Yet, the way original and
augmented samples are combined to form the augmented training set is a design
choice. For instance, in TC literature, [20,32] augment the data before starting
the training, while [46] augments mini-batches during the training process. In
this work, we apply augmentation samples to a training mini-batch of size B,
with the two policies sketched in Fig. 2. Replace substitutes an original sample
xi with its augmentation by sampling from a Bernoulli (P = Preplace) random
variable—during one training epoch, approximately a Preplace fraction of the
original data is “hidden”. Instead, Inject increases the batch size by augmenting
each sample Ninject times (e.g., in Fig. 2 the original batch size is doubled by
setting Ninject = 1).

3.3 Latent Space Geometry (G3)

Augmented samples play a crucial role in model training, just like the original
training samples from which they are derived. To understand the impact of
augmentations on the improvement or detriment of classification performance,
we propose to examine the latent space of the classifier. In order to conduct
a comprehensive analysis, we need to consider two aspects applicable to any
supervised classification task.

Augmentation-vs-Test. ML methods operate on the assumption that training
data serves as a “proxy” for test samples, i.e., the patterns learned on training
data “generalize” to testing data as the two sets of data resemble each other
properties. In this context, augmentations can be considered as a means for
fostering data generalization by incorporating samples that resemble even more
testing data compared to what is available in training data. However, it is impor-
tant to empirically quantify this effect by measuring, for instance, the distance
between augmented and test samples. In other words, we aim to quantify up to
which extent augmented samples are better at mimicking test samples compared
to the original data.

170 C. Wang et al.

Augmentation-vs-Train. The performance of a feature extractor greatly
depends on how well the feature extractor separates different classes in the latent
space. Data augmentations play a role in shaping intra/inter-class relationships
created by the feature extractor in the latent space. For instance, an augmen-
tation that generates samples far away from the region of a class can disrupt
class semantics—the augmentation is introducing a new behavior/mode making
it hard for the classifier to be effective. At the same time, however, expand-
ing the region of a class can be a beneficial design choice—augmentations that
enable a better definition of class boundaries simplify the task of the classifier.
Understanding such dynamics requires empirical observations, for instance, by
comparing the distance between original training data and augmented data. In
other words, we aim to verify if augmentations yielding good performance are in
a “sweet spot”: they create samples that are neither too close (i.e., introduce too
little variety) nor too far (i.e., disrupt class semantics) from original samples.

3.4 Combining Augmentations (G4)

To address G1, each trained model is associated to an individual augmentation.
However, in CV it is very common to combine multiple augmentations [8]. Hence,
we aim to complement G1 by measuring the performance of three different poli-
cies augmenting mini-batches based on a set A′ ⊂ A composed of top-performing
augmentations based on the G1 benchmark: the Ensemble policy uniformly sam-
ples one of the augmentations in A′ independently for each mini-batch sample;
the RandomStack policy randomly shuffles A′ independently for each mini-batch
sample before applying all augmentations; finally, the MaskedStack policy uses
a predefined order for A′ but each augmentation is associated to a masking
probability, i.e., each sample in the mini-batch independently selects a subset of
augmentations of the predefined order.

4 Experimental Settings

4.1 Datasets

To address our research goals we considered the datasets summarized in Table 4.
MIRAGE-19 [3] is a public dataset gathering traffic logs from 20 popular Android
apps2 collected at the ARCLAB laboratory of the University of Napoli Federico
II. Multiple measurement campaigns were operated by instrumenting 3 Android
devices handed off to ≈300 volunteers (students and researchers) for interacting
with the selected apps for short sessions. Each session resulted in a pcap file
and an strace log mapping each socket to the corresponding Android applica-
tion name. Pcaps were then post-processed to obtain bidirectional flow logs by
grouping all packets belonging to the same 5-tuple (srcIP, srcPort, dstIP, dst-
Port, L4proto) and extracting both aggregate metrics (e.g., total bytes, packets,

2 Despite being advertised with having traffic from 40 apps, the public version of the
dataset only contains 20 apps.

Data Augmentation for Traffic Classification 171

Table 4. Summary of datasets properties.

Name Classes Curation Flows per-class Pkts
all min max ρ mean

MIRAGE-19 [3] 20 none 122 k 1,986 11,737 5.9 23
>10pkts 64 k 1,013 7,505 7.4 17

MIRAGE-22 [14] 9 none 59 k 2,252 18,882 8.4 3,068
>10pkts 26 k 970 4,437 4.6 6,598

Enterprise 100 none 2.9 M 501,221 5,715 87.7 2,312
ρ : ratio between max and min number of flows per-class—the larger the
value, the higher the imbalance;

etc.), per-packet time series (packet size, direction, TCP flags, etc.), raw packets
payload bytes (encoded as a list of integer values) and mapping a ground-truth
label by means of the strace logs.

MIRAGE-22 [14] is another public dataset collected by the same research team
and with the same instrumentation as MIRAGE-19 which targets 9 video meeting
applications used to perform webinars (i.e., meetings with multiple attendees
and a single broadcaster), audio calls (i.e., meetings with two participants using
audio-only), video calls (i.e., meetings with two participants using both audio
and video), and video conferences, (i.e., meetings involving more than two par-
ticipants broadcasting audio and video).

Enterprise is instead a private3 dataset collected by monitoring network flows
from vantage points deployed in residential access and enterprise campus net-
works. For each flow, the logs report multiple aggregate metrics (number of
bytes, packets, TCP flags counters, round trip time statistics, etc.), and the
packet time series of packet size, direction and IAT for the first 50 packets of
each flow. Moreover, each flow record is also enriched with an application label
provided by a commercial DPI software directly integrated into the monitoring
solution and supporting hundreds of applications and services.

Data Curation. Table 4 compares different dataset properties. For instance,
MIRAGE-19 and MIRAGE-22 are quite different from each other despite being
obtained via the same platform. Specifically, MIRAGE-19 gathers around 2× more
flows than MIRAGE-22 but those are 100× shorter. As expected, all datasets are
subject to class imbalance measured by ρ, i.e., the ratio between maximum and
minimum number of samples per class. However, Enterprise exhibits a larger
class imbalance with respect to the other two datasets. Last, while Enterprise
did not require specific pre-processing, both MIRAGE-19 and MIRAGE-22 required
a curation to remove background traffic—flows created by netd deamon, SSDP,
Android google management services and other services unrelated to the target
Android apps—and flows having less than 10 packets.
3 Due to NDA we are not allowed to share the dataset.

172 C. Wang et al.

Data Folds and Normalization. As described in Sect. 3.1, each flow is mod-
eled via a multivariate time series x consisting of D = 3 features (packets size,
direction, and IAT) related to the first T = 20 packets (applying zero padding
in the tail where needed). From the curated datasets we created 80 random
70/15/15 train/validation/test folds. We then processed each train+val split to
extract statistics that we used for normalizing the data and to drive the augmen-
tation process. Specifically, we computed both per-coordinate (d, t) and global
(i.e., flattening all flows time series into a single array) mean and standard devia-
tion for each class—these statistics provided us the σy

(d,t) and σy
(:,t) needed for the

augmentations (see Fig. 1 and Tables 1-3). For IAT, we also computed the global
99th percentile across all classes q99iat. Given a multi-variate input x, we first
clip packet size values in the range [0, 1460] and IAT values in the range [1e-7,
q99iat]. Due to high skew of IAT distributions, we also log10-scaled the IAT feature
values.4 Last, all features are standardized to provide values x(d,t) ∈ [0, 1].

Model Architecture and Training. We rely on a 1d-CNN based neural net-
work architecture with a backbone including 2 ResNet blocks followed by a
linear head resulting in a compact architecture of ≈100k parameters. (see Fig. 7
and Listing 1.1 in the appendix for details). Models are trained for a maxi-
mum of 500 epochs with a batch size B = 1,024 via an AdamW optimizer with a
weight decay of 0.0001 and a cosine annealing learning rate scheduler initialized
at 0.001. Training is subject to early stopping by monitoring if the validation
accuracy does not improve by 0.02 within 20 epochs. We coded our modeling
framework using PyTorch and PyTorch Lightning and ran our modeling cam-
paigns on Linux servers equipped with multiple NVIDIA Tesla V100 GPUs. We
measured the classification performance via the weighted F1 score considering a
reference baseline where training is not subject to augmentations.

5 Results

In this section, we discuss the results of our modeling campaigns closely following
the research goals introduced in Sect. 3.

5.1 Augmentations Benchmark (G1)

We start by presenting the overall performance of the selected augmentations.
Specifically, Table 5 collects results obtained by applying augmentations via
Inject with Ninject = 1 (i.e., each original sample is augmented once)5 and sam-
pling uniformly the magnitude α ∼ U [0, 1]. Table 5 shows the average weighted
F1 score across 80 runs and related 95th-percentile confidence intervals.

4 We did not log-scale packet sizes values as we found this can reduce accuracy based
on preliminary empirical assessments.

5 Since we train the reference baseline with a batch size B = 1024, when adding aug-
mentations we instead adopt B = 512 (which doubles via injection).

Data Augmentation for Traffic Classification 173

Table 5. Augmentations benchmark (G1).

Augmentation MIRAGE-19 MIRAGE-22 Enterprise

Baseline None 75.43±.10 94.92±.07 92.43±.33

Amplitude

Constant WrapUp 0.61±.12 0.36±.09 −0.02±.15

Gaussian Noise 0.89±.11 0.24±.09 0.15±.14

Gaussian WrapUp 1.01±.13 0.74±.09 0.24±.12

Spike Noise 1.66±.12 0.91±.09 0.93±.13

Sine WrapUp 0.63±.11 0.25±.09 −0.06±.16

Masking
Bernoulli Mask 2.55±.12 1.29±.09 1.25±.16

Window Mask 2.37±.13 1.08±.09 1.18±.16

Sequence

CutMix 2.65±.13 1.40±.10 −0.21±.10

Dup-FastRetr 3.23±.13 1.56±.09 0.83±.15

Dup-RTO 2.89±.13 1.33±.09 0.91±.15

Horizontal Flip −0.71±.11 −0.52±.09 −0.88±.15

Interpolation 0.44±.12 0.53±.10 −0.61±.14

Packet Loss 0.88±.12 0.66±.09 0.60±.22

Permutation 3.67±.13 1.97±.09 0.89±.08

Perm-RTO 3.15±.12 1.54±.09 0.88±.12

Perm-FastRetr 2.11±.12 1.00±.09 0.74±.26

Translation 4.40±.13 2.02±.09 0.95±.15

Wrap 4.11±.13 2.09±.08 0.57±.12

The top-3 best and worst augmentations are color-coded.

Reference Baseline. We highlight that our reference baseline performance
for MIRAGE-19 and MIRAGE-22 are qualitatively aligned with previous literature
that used those datasets. For instance, Table 1 in [14] reports a weighted F1 of
97.89 for a 1d-CNN model when using the first 2,048 payload bytes as input for
MIRAGE-22; Fig. 1 in [5] instead shows a weighted F1 of ≈75% for 100 packets time
series input for MIRAGE-19. Notice however that since these studies use training
configurations not exactly identical to ours, a direct comparison with our results
should be taken with caution. Yet, despite these differences, we confirm MIRAGE-
19 to be a more challenging classification task compared to MIRAGE-22. However,
we argue that such a difference is unlikely depending only on the different number
of classes (MIRAGE-19 has 20 classes while MIRAGE-22 only 9). This is evident by
observing that Enterprise yields very high performance despite having 10×
more classes than the other two datasets. We conjecture instead the presence of
“cross-app traffic” such as flows generated by libraries/services common across
multiple apps from the same provider (e.g., apps or services provided by Google

174 C. Wang et al.

Fig. 3. Augmentations rank and critical distance (G1).

or Facebook) and/or the presence of ads traffic,6 but the datasets raw data is
not sufficiently detailed to investigate our hypothesis.

Takeaways. While the classification tasks complexity is well captured by models
performance, it does not necessarily relate to the number of classes or dataset
size. These effects are visible only when studying multiple datasets at once, but
unfortunately a lot of TC studies focus on individual datasets.

Augmentations Rank. Overall, all augmentations are beneficial except for
Horizontal Flip which, as we shall see in Sect. 5.3, breaks class semantics. As
expected, not all augmentations provide the same gain and their effectiveness
may vary across datasets. Specifically, sequence and masking better suit our TC
tasks.

For a more fine-grained performance comparison, we complement Table 5
results by analyzing augmentations rank via a critical distance by following the
procedure described in [12]. Specifically, for each of the 80 modeling runs we first
ranked the augmentations from best to worst (e.g., if augmentations A, B, and
C yield a weighted F1 of 0.9, 0.7, and 0.8, their associated rankings would be
1, 3, and 2) splitting ties using the average ranking of the group (e.g., if aug-
mentations A, B, and C yield a weighted F1 of 0.9, 0.9 and 0.8, their associated
rankings would be 1.5, 1.5, and 3). This process is then repeated across the 80
runs and a global rank is obtained by computing the mean rank for each aug-
mentation. Last, these averages are compared pairwise using a post-hoc Nemenyi
test to identify which groups of augmentations are statistically equivalent. This
decision is made using a Critical Distance CD = qα

√
k(k + 1)/6N , where qα is

based on the Studentized range statistic divided by
√

2, k is equal to the num-
ber of augmentations compared and N is equal to the number of samples used.
Results are then collected in Fig. 3 where each augmentation is highlighted with
its average rank (the lower the better) and horizontal bars connect augmentations
that are statistically equivalent. For instance, while Table 5 shows that Trans-
late is the best on average, Fig. 3 shows that {Translate, Wrap, Permutation,

6 MIRAGE-22 focuses on video meeting apps which are all from different providers and
ads free by design.

Data Augmentation for Traffic Classification 175

Dup-FastRetr} are statistically equivalent. We remark that Fig. 3 refers to
MIRAGE-19 and MIRAGE-22 but similar considerations hold for Enterprise as well.

Recall that our training process is subject to an early stop mechanism.
Interestingly, we observed that augmentations yielding better performance also
present a longer number of training epochs (see Fig. 8 in Appendix). This
hints that effective augmentations foster better data representations extraction,
although some CV studies also show that early stopping might not necessar-
ily be the best option to achieve high accuracy in some scenarios. An in-depth
investigation of these training mechanisms is however out of scope for this paper.

Takeaways. Augmentations bring benefits that, in absolute scale, are compa-
rable to what is observed in CV literature [27]. Our benchmark shows that TC
sequencing and masking augmentations are better options than amplitude aug-
mentations. This confirms previous literature that implicitly discarded amplitude
augmentations. Finally, despite performance ranks can suggest more performant
augmentations (e.g., Translation or Bernoulli mask), agreement between datasets
seems more qualitative than punctual (e.g., masking is preferred to sequencing
for Enterprise , but the reverse is true for the other two datasets).

Sensitivity to Magnitude. Most of the augmentations we analyzed are subject
to a magnitude α hyper-parameter (see Tables 1-3) that is randomly selected
for the results in Table 5. To investigate the relationship between classification
performance and augmentation magnitude we selected 3 augmentations among
the top performing ones {Translation, Wrap, Permutation} and three among the
worst performing {Gaussian Noise, Sine WrapUp, Constant WrapUp}.7 For each
augmentation, we performed 10 modeling runs using magnitude α = 0.5 and
we contrasted these results with the related runs from the previous modeling
campaign. Specifically, by grouping all results we obtained a binary random-
vs-static performance comparison which we investigated through a Wilcoxon
signed rank sum test that indicated no statistical difference, i.e., the selection
of magnitude is not a distinctive factor to drive the augmentation performance.
The same conclusion holds true when repeating the analysis for each individual
augmentation rather than grouping them together.

Takeaways. Although we do not observe any dependency on the augmentation
magnitude α, augmentations performance can still be affected by their tuning (as
will be discussed further in Sect. 5.3). Unfortunately, this tuning process often
relies on a trial-and-error process, making it challenging to operate manually.

5.2 Training Batches Composition (G2)

Correctly mixing original with augmented data is an important design choice.

Batching Policies. To show this, we considered the three policies introduced
in Sect. 3.2: Replace (which randomly substitutes training samples with aug-
mented ones), Inject (which expands batches by adding augmented samples),
7 We excluded HorizontalFlip as it hurt performance and Interpolation since it does

not depend from a magnitude.

176 C. Wang et al.

Fig. 4. Comparing Replace, Inject and Pre-augment batch creation policies (G2).

and Pre-augment (which expands the whole training set before the training
start).8 Batching policies are compared against training without augmentations
making sure that each training step has the same batch size B = 1,204.9 Based
on Sect. 5.1 results, we limited our comparison to {Translation, Wrap, Permu-
tation} against {Sine WrapUp, Constant WrapUp} as representative of good
and poor augmentations across the three datasets under study. We configured
Replace with Preplace ∈ {0.3, 0.5, 1}, Inject with Ninject ∈ {1, 2, 4, 8} and aug-
mented each training sample 10 times for Pre-augment. Figure 4 collects the
results with lines showing the average performance while shaded areas corre-
spond to 95th percentile confidence intervals. Overall, top-performing augmenta-
tions (� marker) show a positive trend—the higher the volume of augmentations
the better the performance—while poor-performing augmentations (× marker)
have small deviations from the baseline (dashed line). Based on performance,
we can order Replace < Pre-augment < Inject, i.e., the computationally cheaper
Pre-augment is on par with the more expensive Replace when Preplace = 1 but
Inject is superior to both alternatives.

Takeaways. On the one hand, Inject shows a positive trend that perhaps con-
tinues beyond Ninject > 8.10 On the other hand, the performance gain may be
too little compared to the computational cost when using many augmentations.
For instance, Ninject = 8 requires 3× longer training compared to Ninject = 1.

Class-weighted Sampling. TC datasets are typically imbalanced (see Table 4).
It is then natural to wonder if/how augmentations can help improve performance
for classes with fewer samples, namely minority classes. While the batching
policies discussed do not alter the natural distribution of the number of samples

8 Based on our experience on using code-bases related to publications, we were unable
to pinpoint if any of those techniques is preferred in CV literature.

9 For instance, when Ninject = 1, a training run needs to be configured with B = 512
as the mini-batches size doubles via augmentation.

10 The limit of our experimental campaigns were just bounded by training time and
servers availability so it is feasible to go beyond the considered scenarios.

Data Augmentation for Traffic Classification 177

Table 6. Impact of class-weighted sampler on MIRAGE-19 (G2).

Majority classes Minority classes

Cls samp. Pre Rec weight F1 Pre Rec weight F1

No Aug

with 83.90±.21 81.01±.21 82.36±.14 56.63±.38 60.78±.26 58.18±.21

without 81.60±.23 82.93±.19 82.16±.12 62.29±.48 58.02±.38 59.78±.27

diff 2.30±.32 −1.92±.28 0.20±.20 −5.66±.60 2.76±.46 −1.60±.35

Translation

with 89.12±.09 84.26±.11 86.43±.08 60.71±.24 68.64±.17 63.65±.19

without 85.36±.14 86.73±.10 85.86±.09 69.69±.25 64.14±.25 66.20±.22

diff 3.77±.06 −2.48±.02 0.57±.02 −8.98±.04 4.50±.09 −2.55±.05

per class, alternative techniques like Random Over Sampling (ROS) and Random
Under Sampling (RUS) allow to replicate/drop samples for minority/majority
classes [23]. A class-weighted sampler embodies a more refined version of those
mechanisms and composes training mini-batches by selecting samples with a
probability inversely proportional to the classes size—each training epoch results
in a balanced dataset. When combined with augmentations, this further enhance
minority classes variety.

The adoption of a class-weighted sampler seems a good idea in principle.
Yet, the enforced balancing in our experience leads to conflicting results. We
showcase this in Table 6 where we show Precision, Recall, and weighted F1 for
20 runs trained with/without a weighted sampler and with/without Translation
(selected as representative of a good augmentation across datasets). We break
down the performance between majority and minority classes and report per-
metric differences when using or not the weighted sampler. The table refers to
MIRAGE-19 but similar results can be obtained for the other datasets. Ideally, one
would hope to observe only positive differences with larger benefits for minority
classes. In practice, only the Recall for minority classes improves and overall we
observe a poorer weighted F1 (−0.26 across all classes). By investigating mis-
classifications, we found that majority classes are more confused with minority
classes and when introducing augmentations those effects are further magnified.

Takeaways. Paying too much attention to minority classes can perturb the over-
all classifier balance, so we discourage the use of class-weighted samplers.

5.3 Latent Space Geometry (G3)

Table 5 allows to identify effective augmentations bringing significant benefits in
terms of model performance. However, to understand the causes behind the per-
formance gaps we need to investigate how original, augmented, and test samples
relate to each other.

178 C. Wang et al.

Fig. 5. Investigating train, augmented and test samples relationships (G3).

Augmented-vs-Test Samples. We start our analysis by taking the point of
view of the test samples. Specifically, we investigated which type of points are
found in the “neighbourhood” of a test sample. To do so, we started creating
“true anchors” by projecting both the original training data and 5 augmentations
of each training sample—these anchors are “proxy” of what is presented to the
model during training. Then we projected the test samples and looked for the
closest 10 anchors (based on cosine similarity) of each test sample. Finally, we
counted how many of the 10 anchors share the same label as the test samples.
Results for each augmentation are reported in Fig. 5 for MIRAGE-19 and MIRAGE-
22 (similar results holds for Enterprise) as a scatter plot where the coordinates
of each point correspond to the average number of anchors with the correct label
found and their average cosine similarity with respect to the test sample. Each
augmentation is color-coded with respect to its weighted F1 score.

Despite both metrics vary in a subtle range, such variations suffice to cap-
ture multiple effects. First of all, considering the layout of the scatter plot, we
expected good transformations to be placed in the top-right corner. This is

Data Augmentation for Traffic Classification 179

Fig. 6. Comparing original and augmented samples in the latent space (G3).

indeed the case as presented in Fig. 5 (a-b) where darker colors (higher weighted
F1) concentrate in the top-right corner. However, while MIRAGE-22 (Fig. 5(a))
shows a linear correlation between the two metrics, MIRAGE-19 (Fig. 5(a)) shows
outliers, most notably Horizontal Flip, Interpolation, and Constant Wrapup.

Figure 5 (c-d) complement the analysis by showing results when considering
only augmented samples as anchors. Differently from before, now Horizontal Flip
and Interpolation are found to be the most dissimilar to the test samples—this
is signaling that augmentations are possibly disrupting class semantics, i.e., they
are introducing unnecessary high variety.

180 C. Wang et al.

Last, for each test sample we looked at the closest augmented anchor and
the closest original sample anchor with the same label. The average ratio of
those pairwise distances is centered around 1—augmented samples “mimic” test
samples as much as the original samples do.

Takeaways. Top-performing augmentations do not better mimic test samples
compared to original samples. Rather, they help training the feature extractor
f(·) so that projected test samples are found in neighborhood of points likely to
have the expected label.

Augmented-vs-Original Samples. We complement the previous analysis by
investigating original x and augmented x′ samples relationships. Differently from
before, for this analysis original samples are augmented once. Then all points
are projected in the latent space f(x) and f(x′) and visualized by means of a
2d t-SNE projection.11 We also compute the Kernel Density Estimation (KDE)
of the Euclidean distance across all pairs. Figure 6 presents the results for 2 top-
performing (Translate, Wrap) and 4 poor-performing (Constant Wrapup, Inter-
polation, Sine Wrapup, Horizontal Flip) augmentations for MIRAGE-19. Points
in the t-SNE charts are plotted with alpha transparency, hence color saturation
highlights prevalence of either augmented or original samples.

Linking back to the previous observations about Horizontal Flip and Inter-
polation, results now show the more “aggressive” nature of Interpolation—the
t-SNE chart is split vertically with the left (right) side occupied by augmented
(original) samples only and the Euclidean distance KDEs show heavier tails. By
recalling their definition, while it might be easy to realize why Horizontal Flip
is a poor choice—a client will never observe the end of the flow before seeing
the beginning, hence they are too artificious—it is difficult to assess a priori the
effect of Interpolation. Overall, both augmentations break class semantics.

At the opposite side of the performance range we find augmentations like Sine
WrapUp and Constant WrapUp. From Fig. 6 we can see that both introduce
little-to-no variety—the Euclidean distance distributions are centered around
zero. That said, comparing their t-SNE charts we can still observe a major differ-
ence between the two transformations which relates to their design. Specifically,
Constant WrapUp is applied only to IAT and introduces negligible modifications
to the original samples. Conversely, Sine WrapUp is applied on either packet size
or IAT. As for Constant WrapUP, the changes to IAT are subtle, while variations
of packet size lead to generating an extra “mode” (notice the saturated cluster
of points on the left side of the t-SNE plot). In other words, besides the design of
the augmentation itself, identifying a good parametrization is very challenging
and in this case is also feature-dependent.

Compared to the previous, Translate and Wrap have an in-between
behavior—the body of the KDEs show distances neither too far nor too close and
the t-SNE charts show a non-perfect overlap with respect to the original samples.
Overall, both these augmentations show positive signs of good sample variety.

11 Our model architecture uses a latent space of 256 dimensions (see Listing 1.1) which
the t-SNE representation compresses into a 2d space.

Data Augmentation for Traffic Classification 181

Table 7. Combining augmentations (G4).

Augmentation MIRAGE-19 MIRAGE-22

Baseline No Aug 75.43±.10 94.92±.07

Single
Translation 4.40±.13 2.02±.09

Wrap 4.11±.13 2.09±.08

Permutation 3.67±.13 1.97±.09

Combined

Ensemble 4.44±.12 2.18±.09

RandomStack 4.17±.12 2.18±.09

MaskedStack (p = 0.3) 4.45±.13 2.26±.09

MaskedStack (p = 0.5) 4.60±.15 2.24±.09

MaskedStack (p = 0.7) 4.63±.14 2.18±.10

Takeaways. Effective transformations operate in a “sweet spot”: they nei-
ther introduce too little variety—traditional policies like Random Over Sampling
(ROS) and Random Under Sampling (RUS) [23] are ineffective—nor they break
classes semantic by introducing artificial “modes”.

5.4 Combining Augmentations (G4)

We conclude our analysis by analyzing the impact of combining different aug-
mentations. For this analysis, we selected 3 top-performing augmentations and
compared their performance when used in isolation against relying on Ensemble,
RandomStack and MaskedStack (see Sect. 3.4). Table 7 collects results obtained
from 80 modeling runs for each configuration. Overall, mixing multiple augmen-
tations is beneficial but gains are small, i.e., <1%.

Takeaways. While one would expect that mixing good augmentations can only
improve performance, we note that also CV literature is split on the subject. If on
the one hand combining augmentations is commonly done in training pipelines,
recent literature shows that such combinations bring marginal benefits [27].

6 Discussion and Conclusions

In this work we presented a benchmark of hand-crafted DA for TC covering
multiple dimensions: a total of 18 augmentations across 3 families, with 3 poli-
cies for introducing augmentations during training, investigating the classifi-
cation performance sensitivity with respect to augmentations magnitude and
class-weighted sampling across 3 datasets with different sizes and number of
classes. Overall, our results confirm what previously observed in CV literature—
augmentations are beneficial even for large datasets, but in absolute terms the
gains are dataset-dependent. While from a qualitative standpoint, sequence and
mask augmentations are better suited for TC tasks than amplitude augmenta-
tions, no single augmentation is found superior to alternatives and combining

182 C. Wang et al.

them (via stacking or ensembling), even when selecting top-performing ones,
marginally improves performance compared to using augmentations in isolation.
Last, by investigating the models latent space geometry, we confirm that effec-
tive augmentations provide good sample variety by creating samples that are
neither too similar nor too different from the original ones which fosters better
data representations extraction (as suggested by the longer training time).

Despite the multiple dimensions covered, our work suffers from some lim-
itations. Most notably, it would be desirable to include the larger and more
recent CESNET-TLS22 [25] and CESNET-QUIC23 [24] datasets but such expansion
requires large computational power.12 Still related to using large datasets, we can
also envision more experiments tailored to investigate the relationship between
datasets size and augmentations. For instance, one could sample down a large
dataset (e.g., by randomly selecting 1% or 10% of the available samples) and
investigate if augmentations result more effective with the reduced datasets. In
particular, since Inject shows a positive trend with respect to its intensity Ninject

we hypothesize that by augmenting a small dataset one can achieve the same
performance as using larger datasets—showing these effects are clearly relevant
for TC as collecting and releasing large datasets is currently a pain point. Last,
our campaigns rely only a CNN-based architecture while assessing DA with other
architectures (e.g., Transformer-based for time series [45]) is also relevant.

Ultimately, DA modeling campaigns as the one we performed require oper-
ating with a grid of configurations and parameters—it is daunting to explore
the design space by means of brute forcing all possible scenarios. While domain
knowledge can help in pruning the search space, it can also prevent from con-
sidering valuable alternatives. For instance, recall that Xie et al. [46] suggest to
use augmentations inspired by TCP protocol dynamics. According to our bench-
mark, these augmentations are indeed among the top performing ones, yet not
necessarily the best ones—navigating the search space results in a balancing act
between aiming for qualitative and quantitative results.

We identify two viable options to simplify the design space exploration. On
the one hand, re-engineering the augmentations so that their parametrization is
discovered during training might resolve issues similar to what observed for Sine
Wrap (see Sect. 5.3). On the other hand, a more efficient solution would be to
rely on generative models avoiding the burden of designing hand-crafted augmen-
tations. More specifically, we envision a first exploration based on conditioning
the generative models on the latent space properties learned via hand-crafted
DA (e.g., the distance between original and augmented samples should be in the
“sweet spot”). Then, we could target the more challenging scenario of training
unconditionally and verify if effective representations are automatically learned.

Overall, we believe that the performance observed in our experimental cam-
paigns might still represent a lower bound and extra performance improvements
could be achieved via generative models. We call for the research community to
join us in our quest for integrating DA and improve TC performance.

12 For reference, models trained on Enterprise can take up to 6 h. Since CESNET
datasets contains 100× the number of samples of Enterprise, performing a thorough
exploration of the DA design space is extremely resource demanding.

Data Augmentation for Traffic Classification 183

Appendix

Fig. 7. Model architecture.

Listing 1.1. Model architecture printout (MIRAGE-19, 20 classes)
--

Layer (type) Output Shape Param #
==

Conv1d -1 [-1, 64, 20] 576
BatchNorm1d -2 [-1, 64, 20] 128

Conv1d -3 [-1, 64, 10] 12,288
BatchNorm1d -4 [-1, 64, 10] 128

Conv1d -5 [-1, 64, 10] 12,288
BatchNorm1d -6 [-1, 64, 10] 128

Conv1d -7 [-1, 64, 10] 4,096
BatchNorm1d -8 [-1, 64, 10] 128

Conv1d -9 [-1, 128, 5] 24,576
BatchNorm1d -10 [-1, 128, 5] 256

Conv1d -11 [-1, 128, 5] 49,152
BatchNorm1d -12 [-1, 128, 5] 256

Conv1d -13 [-1, 128, 5] 8,192
BatchNorm1d -14 [-1, 128, 5] 256

AdaptiveAvgPool1d -15 [-1, 128, 1] 0
Linear -16 [-1, 20] 2,580

==
Total params: 115 ,028
Trainable params: 115 ,028
Non -trainable params: 0
--
Input size (MB): 0.00
Forward/backward pass size (MB): 0.09
Params size (MB): 0.44
Estimated Total Size (MB): 0.53
--

Fig. 8. Comparing performance improvement and training length.

184 C. Wang et al.

References

1. Additional material for the paper: Rosetta: Enabling Robust TLS Encrypted Traf-
fic Classification in Diverse Network Environments with TCP-Aware Traffic Aug-
mentation. https://cloud.tsinghua.edu.cn/f/7f250d2ffce8404b845e/?dl=1

2. Aceto, G., Ciuonzo, D., Montieri, A., Pescapè, A.: Mimetic: mobile encrypted traffic
classification using multimodal deep learning. Comput. Netw. 165, 106944 (2019)

3. Aceto, G., Ciuonzo, D., Montieri, A., Persico, V., Pescapè, A.: Mirage: mobile-app
traffic capture and ground-truth creation. In: IEEE International Conference on
Computing, Communication and Security (ICCCS) (2019)

4. Akbari, I., et al.: A look behind the curtain: traffic classification in an increasingly
encrypted web. ACM Measur. Anal. Comput. Syst. 5(1), 1–26 (2021)

5. Bovenzi, G., et al.: A first look at class incremental learning in deep learning mobile
traffic classification. In: IFIP Traffic Measurement and Analysis (TMA) (2021)

6. Burg, M.F., et al.: A data augmentation perspective on diffusion models and
retrieval. arXiv:2304.10253 (2023)

7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. arXiv:2002.05709 (2020)

9. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning
augmentation policies from data. arXiv:1805.09501 (2019)

10. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated
data augmentation with a reduced search space. arXiv:1909.13719 (2019)

11. Cubuk, E.D., Dyer, E.S., Lopes, R.G., Smullin, S.: Tradeoffs in data augmenta-
tion: an empirical study. In: International Conference on Learning Representations
(ICLR) (2021)

12. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

13. Eldele, E., et al.: Time-series representation learning via temporal and contextual
contrasting. arXiv:2106.14112 (2021)

14. Guarino, I., Aceto, G., Ciuonzo, D., Montieri, A., Persico, V., Pescapé, A.: Clas-
sification of communication and collaboration apps via advanced deep-learning
approaches. In: IEEE International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD) (2021)

15. Guarino, I., Wang, C., Finamore, A., Pescapé, A., Rossi, D.: Many or few samples?
Comparing transfer, contrastive and meta-learning in encrypted traffic classifica-
tion. In: IFIP Traffic Measurement and Analysis (TMA) (2023)

16. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538059 91

17. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling app-
roach for imbalanced learning. In: International Joint Conference on Neural Net-
works (IJCNN) (2008)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv:1512.03385 (2015)

19. Hong, Y., Zhang, J., Sun, Z., Yan, K.: SAFA: sample-adaptive feature augmenta-
tion for long-tailed image classification. In: Avidan, S., Brostow, G., Cissé, M.,
Farinella, G.M., Hassner, T. (eds) Computer Vision. ECCV 2022. LNCS, vol.
13684, pp. 587–603. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
20053-3 34

https://cloud.tsinghua.edu.cn/f/7f250d2ffce8404b845e/?dl=1
http://arxiv.org/abs/2304.10253
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1909.13719
http://arxiv.org/abs/2106.14112
https://doi.org/10.1007/11538059_91
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/978-3-031-20053-3_34
https://doi.org/10.1007/978-3-031-20053-3_34

Data Augmentation for Traffic Classification 185

20. Horowicz, E., Shapira, T., Shavitt, Y.: A few shots traffic classification with mini-
flowpic augmentations. In: ACM Internet Measurement Conference (IMC) (2022)

21. Jain, S., Addepalli, S., Sahu, P.K., Dey, P., Babu, R.V.: Dart: diversify-aggregate-
repeat training improves generalization of neural networks. In: Computer Vision
and Pattern Recognition (CVPR) (2023)

22. Jiang, X., Liu, S., Gember-Jacobson, A., Schmitt, P., Bronzino, F., Feamster, N.:
Generative, high-fidelity network traces. In: ACM Workshop on Hot Topics in
Networks (HotNets) (2023)

23. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance.
J. Big Data 6, 1–54 (2019)

24. Luxemburk, J., Hynek, K., Cejka, T.: Encrypted traffic classification: the QUIC
case. In: IFIP Traffic Measument and Analysis (TMA) (2023)

25. Luxemburk, J., Čejka, T.: Fine-grained TLS services classification with reject
option. Comput. Netw. 220, 109467 (2023)

26. Mumuni, A., Mumuni, F.: Data augmentation: a comprehensive survey of modern
approaches. Array 16, 100258 (2022)

27. Müller, S.G., Hutter, F.: Trivialaugment: tuning-free yet state-of-the-art data aug-
mentation. In: International Conference on Computer Vision (ICCV) (2021)

28. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
gans. arXiv:1610.09585 (2017)

29. Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., Aguilar, J.: Towards the
deployment of machine learning solutions in network traffic classification: a sys-
tematic survey. IEEE Commun. Surv. Tutor. 21(2), 1988–2014 (2019)

30. Pöppelbaum, J., Chadha, G.S., Schwung, A.: Contrastive learning based self-
supervised time-series analysis. Appl. Soft Comput. 117, 108397 (2022)

31. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. arXiv:1506.02640 (2016)

32. Rezaei, S., Liu, X.: How to achieve high classification accuracy with just a few
labels: a semi-supervised approach using sampled packets. In: IEEE Industrial Con-
ference Advances in Data Mining - Applications and Theoretical Aspects (ICDM)
(2019)

33. Schuhmann, C., et al.: LAION-5b: an open large-scale dataset for training next gen-
eration image-text models. In: Neural Information Processing Systems (NeurIPS)
- Datasets and Benchmarks Track (2022)

34. Shen, M., et al.: Machine learning-powered encrypted network traffic analysis: a
comprehensive survey. IEEE Commun. Surv. Tutor. 25(1), 791–824 (2023)

35. Shen, R., Bubeck, S., Gunasekar, S.: Data augmentation as feature manipulation.
arXiv:2203.01572 (2022)

36. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. J. Big Data 6(1), 1–48 (2019)

37. Sivaroopan, N., Madarasingha, C., Muramudalige, S., Jourjon, G., Jayasumana,
A., Thilakarathna, K.: SyNIG: synthetic network traffic generation through time
series imaging. In: IEEE Local Computer Networks (LCN) (2023)

38. Sivaroopan, N., Bandara, D., Madarasingha, C., Jourjon, G., Jayasumana, A., Thi-
lakarathna, K.: Netdiffus: network traffic generation by diffusion models through
time-series imaging. arXiv:2310.04429 (2023)

39. Towhid, M.S., Shahriar, N.: Encrypted network traffic classification using self-
supervised learning. In: IEEE International Conference on Network Softwarization
(NetSoft) (2022)

40. Trabucco, B., Doherty, K., Gurinas, M., Salakhutdinov, R.: Effective data augmen-
tation with diffusion models. arXiv:2302.07944 (2023)

http://arxiv.org/abs/1610.09585
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/2203.01572
http://arxiv.org/abs/2310.04429
http://arxiv.org/abs/2302.07944

186 C. Wang et al.

41. Wang, P., Li, S., Ye, F., Wang, Z., Zhang, M.: PacketCGAN: exploratory study of
class imbalance for encrypted traffic classification using CGAN. In: International
Conference on Communications (ICC) (2020)

42. Wang, Y., Pan, X., Song, S., Zhang, H., Wu, C., Huang, G.: Implicit semantic data
augmentation for deep networks. arXiv:1909.12220 (2020)

43. Wang, Z., Wang, P., Zhou, X., Li, S., Zhang, M.: FlowGAN: unbalanced network
encrypted traffic identification method based on GAN. In: Conference on Parallel
and Distributed Processing with Applications, Big Data and Cloud Computing,
Sustainable Computing and Communications, Social Computing and Networking
(ISPA/BDCloud/SocialCom/SustainCom) (2019)

44. Wen, Q., et al.: Time series data augmentation for deep learning: a survey. In:
International Joint Conference on Artificial Intelligence (IJCAI) (2021)

45. Wen, Q., et al.: Transformers in time series: a survey. arXiv:2202.07125 (2023)
46. Xie, R., et al.: Rosetta: enabling robust TLS encrypted traffic classification in

diverse network environments with TCP-Aware traffic augmentation. In: USENIX
Security Symposium (Security) (2023)

47. Yang, H., Yu, H., Sano, A.: Empirical evaluation of data augmentations for biobe-
havioral time series data with deep learning. arXiv:2210.06701 (2022)

48. Yin, C., Zhu, Y., Liu, S., Fei, J., Zhang, H.: An enhancing framework for botnet
detection using generative adversarial networks. In: IEEE International Conference
on Artificial Intelligence and Big Data (ICAIBD) (2018)

49. Yu, H., Sano, A.: Semi-supervised learning and data augmentation in wearable-
based momentary stress detection in the wild. arXiv:2202.12935 (2022)

50. Yue, Z., et al.: Ts2vec: towards universal representation of time series. In: Proceed-
ings of the Association for the Advancement of Artificial Intelligence Conference
(AAAI) (2022)

51. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regulariza-
tion strategy to train strong classifiers with localizable features. arXiv:1905.04899
(2019)

52. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. arXiv:1710.09412 (2018)

53. Zou, D., Cao, Y., Li, Y., Gu, Q.: The benefits of mixup for feature learning.
arXiv:2303.08433 (2023)

http://arxiv.org/abs/1909.12220
http://arxiv.org/abs/2202.07125
http://arxiv.org/abs/2210.06701
http://arxiv.org/abs/2202.12935
http://arxiv.org/abs/1905.04899
http://arxiv.org/abs/1710.09412
http://arxiv.org/abs/2303.08433

	Data Augmentation for Traffic Classification
	1 Introduction
	2 Background and Related Work
	2.1 Data Augmentation in Traditional Machine Learning Tasks
	2.2 Data Augmentation in Traffic Classification
	2.3 Design Space

	3 Our Goals and Methodology
	3.1 Benchmarking Hand-Crafted DA (G1)
	3.2 Training Batches Composition (G2)
	3.3 Latent Space Geometry (G3)
	3.4 Combining Augmentations (G4)

	4 Experimental Settings
	4.1 Datasets

	5 Results
	5.1 Augmentations Benchmark (G1)
	5.2 Training Batches Composition (G2)
	5.3 Latent Space Geometry (G3)
	5.4 Combining Augmentations (G4)

	6 Discussion and Conclusions
	References

