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Accurate per-flow monitoring is critical for precise network diagnosis, performance analysis, and network
operation and management in general. However, the limited amount of memory available on modern pro-
grammable devices and the large number of active flows force practitioners to monitor only the most relevant
flows with approximate data structures, limiting their view of network traffic. We argue that, due to the
skewed nature of network traffic, such data structures are, in practice, heavily underutilized, i.e., sparse, thus
wasting a significant amount of memory.

This paper proposes a Sparse Approximate Data Structure (SPADA) representation that leverages sparsity
to reduce the memory footprint of per-flow monitoring systems in the data plane while preserving their
original accuracy. SPADA representation can be integrated into a generic per-flow monitoring system and is
suitable for several measurement use cases. We prototype SPADA in P4 for a commercial FPGA target and test
our approach with a custom simulator that we make publicly available, on four real network traces over three
different monitoring tasks. Our results show that SPADA achieves 2× to 11× memory footprint reduction
with respect to the state-of-the-art while maintaining the same accuracy, or even improving it.
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1 INTRODUCTION
Monitoring network traffic on a per-flow basis requires measuring several quantities related to
the packets traversing network devices. These accurate measures provide network operators the
necessary data for fine-grained Operations, Administration, and Management (OAM) algorithms
such as responsive diagnosis [14, 50], precise fault localization [6, 39], traffic engineering [11],
network accounting [23], anomaly detection [65], and many others. However, collecting per-flow
metrics requires a considerable amount of resources, especially at high speed when the number of
active flows might be very high. Considering that recent studies estimate the number of active flows
in the order of 100K per Gbps of traffic [49], accurately monitoring Tbps of traffic might require
several GBs for a few per-flow metrics. Programmable ASIC devices feature memories in the order
of dozens of MBs to accommodate all network applications, including L2/L3 forwarding, among
others. Consequently, the amount of memory allocated for monitoring is but a fraction of the
total one, making accurate per-flow monitoring impractical due to its high memory requirements.
Similarly, in FPGA-based SmartNICs, the amount of memory available for per-flow monitoring is
scarce since the use of large memories such as Double Data Rate Synchronous Dynamic Random
Access Memory (DDR-SDRAM) or High Bandwidth Memory (HBM) is limited by their high access
latency, i.e., tens of clock cycles, and the required resource-hungry cache memory hierarchy.

To better understand the per-flow monitoring problem, Figure 1ab illustrates at a high level how
flows 𝑓1−𝐾 are typically mapped to dedicated or shared arrays of counters (sketches). In particular,
we consider a few concrete use cases: super spreader detection, per-flow quantiles, and flow size
estimation. The goal of super spreader detection algorithms [28, 33, 59] is to estimate, for any given
source IP (sIP), its “cardinality”, i.e., the number of destination IPs (dIPs) it contacts. This task is often
achieved using the HyperLogLog (HLL) [24] sketch, allocating one HLL data structure for each sIP.
Unfortunately, achieving good accuracy with HLL requires a considerable amount of memory. For
this reason, practitioners usually limit the number of monitored sIP to reduce memory occupancy,
or decrease the accuracy, e.g., vHLL [33, 61]. Similarly, monitoring per-flow quantiles [16, 32] of
relevant flow properties, e.g., packet Inter-Arrival Time (IAT), packet size, etc., requires processing
the stream of all packets belonging to the same unidirectional 5-tuple using histogram-based data
structures such as DDSketch [40]. However, using a dedicated sketch for each monitored flow
makes quantile estimation challenging due to the high memory requirements. It is worth noting
that even for basic measurements such as flow size estimation, the amount of memory required to
monitor hundreds of thousands of flows is not negligible with ElasticSketch [63]. We remark that
the above-mentioned monitoring algorithms, as well as other existing ones [5, 15, 17, 29, 38, 45, 56],
require the allocation of a sketch composed by an array of shared or dedicated counters (also called
buckets, bins) for each monitored flow (cf. Figure 1ab): this frequently translates into significant
memory requirements making it difficult to deploy them even for only a fraction of the active flows.
Therefore, we assert the need to reduce the memory requirements of per-flow network monitoring
algorithms, enabling them to coexist with other critical network functions in the data plane.
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Sparse representationStandard representation

(a) Dedicated per-flow sketches (b) One large shared sketch (c) Only non-zero counters/buckets

(most counters/buckets are left to zero due to the skewed nature of network data)
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Fig. 1. Per-flow monitoring using standard (a), (b) and sparse (c) representations.
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Fig. 2. Flow sparsity (a) and memory requirements (b) analysis using one sketch per flow from a CAIDA trace.

Main idea and contributions. In this paper, we show that sizeable gains can be attained by reduc-
ing the amount of unnecessarily allocated memory without compromising the monitoring accuracy.
In a nutshell, we remark that per-flow sketches are designed for extreme scenarios and hence
underutilized in most cases. To solve this problem, we propose a data structure representation
built around the simple concept of only storing counters that are actually used, as depicted in
Figure 1c. To provide a quantitative idea of the under-utilization of sketches in typical measurement
tasks, Figure 2a reports the CDF of the fraction of empty buckets in high accuracy HLL and DDS-
ketch (128 and 64 buckets) on a CAIDA trace for 700K flows. In both cases, per-flow sketches are
highly underutilized, i.e., 80% of per-flow DDSketches feature at least 80% of empty buckets, even
more for HLL. This results in a huge waste of memory as observed in Figure 2b, which contrasts
the memory occupied by the sketches with the one required by only non-zero counters: the picture
shows one-to-two orders of magnitudes of potential memory savings, which holds even for low
accuracy HLL and DDSketch (64 and 32 buckets). We remark that similar sparsity issues arise in
different use cases where sketch-based data structures are employed, [5, 15, 17, 29, 38, 45, 56, 63].
Thus, it can be argued that sparsity is a property common to many measurement tasks.

Sparse monitoring data structure representations are not trivial to implement in networking
because it is not possible to know a priori which flow will lead to sparse data. We acknowledge that
sparse data representation is a well-known technique widely used inmany fields ranging from signal
processing to machine learning [12, 21, 48, 60, 64, 66] – yet, to the best of our knowledge, it has never
been explored in the context of network monitoring. To support sparse monitoring data structures
in the data plane we propose a Sparse Approximate Data Structure (SPADA) representation, which
stores only relevant, i.e., non-zero, sketch counters. One key challenge of implementing sparse
representations in the data plane is storing <key, value> pairs for the non-zero counters, taking
into account hardware limitations and without a priori knowledge of flow sparsity. To address this
challenge, we propose two alternative solutions: (i) a Cuckoo Hash Table with quotienting (qCHT),
which can accommodate any kind of data at the price of non-constant insertion time, and (ii) a
novel data structure, Perfect Invertible Bloom Lookup Table (pIBLT), featuring constant insertion
time but only suitable for counter-based sketches. Our main contributions are as follows:
1. we introduce a sparse representation in the context of a generic data plane monitoring system

which is beneficial for several use cases by reducing memory footprint with no accuracy penalty;
2. we design a batched Cuckoo Hash Table (CHT) compatible with modern programmable pipelines

as it offers approximately constant insertion time by imposing limited recirculation overhead;
3. we design a novel data structure pIBLT, which improves over a traditional IBLT removing false

positives at the cost of a small bitmap;
4. we provide simulation code and results with the CAIDA and MAWI datasets on three use cases,

assessing memory reduction from 2× to over 11× with respect to the state-of-the-art;
5. we implement SPADA pipeline in P4 and benchmark it on a Xilinx FPGA-based SmartNIC target.
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Fig. 3. Generic data plane monitoring system (left) and summary of SPADA configurations (right).

SPADA in a nutshell.We provide a high-level overview of SPADA, with the help of the generic
per-flow monitoring data plane pipeline depicted in Figure 3 (left). First 1○, a flow key (e.g., IP
address or 5-tuple) is extracted at packet arrival and mapped to a SketchID via a Flow Map (FM).
Second 2○, the sketch counters corresponding to that flow are updated in a Sketch Data (SD) store.
Note that a wide set of network monitoring systems [9, 15, 61, 63, 67] can be cast into this two-stage
monitoring system data plane. Finally 3○, the measurements are exported or used locally for traffic
management: as the focus of this paper is on the design and implementation of the data plane, the
control plane is limited to the collection of sketches at the end of a measurement epoch.

A SPADA representation consists of a compression of the Sketch Data by exploiting its sparsity.
To showcase the generality of SPADA, we consider three popular measurement use cases and two
alternative SPADA configurations summarized in Figure 3 (right). Considered use cases are a○
super spreader detection, b○ per-flow packet IAT quantile estimation, and c○ flow size estimation,
which can be performed using state-of-the-art sketches such as HLL [24], DDSketch [40] and
ElasticSketch [63] respectively. For each use case, we consider two SPADA implementations, where
flows are inserted in the Flow Map either statically by the control plane (sta), hence monitoring a
predefined set of flows, or dynamically by the data plane (dyn), as new flows are received.
Paper outline. In Section 2, we review state-of-the-art sketches that can benefit from SPADA and
detail three use cases we use as examples throughout the paper. In Section 3, we introduce the
SPADA representation within a standard per-flow monitoring system. We then, provide its memory
occupancy analytical model, and a detailed memory sizing discussion. The SPADA FPGA-based P4
implementation is described in Section 4. Trace-based simulation results and prototype assessment
are reported in Section 5. Section 6 discusses the related work, and Section 7 concludes the paper.

2 USE CASES
In this section, we first identify a set of sparse monitoring data structures, then we detail state-of-
the-art sketches used for three use cases: a○ super spreader detection (HLL), b○ per-flow packet
IAT distribution (DDSketch), and c○ flow size estimation (ElasticSketch). Given their popularity
and generality, we use them to showcase the benefits of SPADA throughout the rest of the paper.

Sparse monitoring data structures. We report in Table 1 a list of sketches that can exploit
sparsity. Note that the actual benefit of the sparse representation depends on several factors, such
as the number of flows under monitoring, the required accuracy, and the traffic skewness. Generally
speaking, a sparse representation of a sketch can be beneficial when it is allocated per-flow (i.e., a
sketch for each monitored flow) since, due to the natural skewness of traffic, many sketches will
be significantly sparse as motivated before (e.g., use cases a○, b○). Another scenario in which a
sparse representation is useful is when the sketch must provide high accuracy and thus reduce the
collision probability (e.g., use case c○) by increasing the sketch size. We note that with appropriate
sampling strategies [10], any sketch can be sparsified if a small loss in accuracy is acceptable.
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Table 1. Sketches that feature sparse data. Marked (✓) ones are used as reference in our analysis.
Measure Sketch name Description Note

Cardinality
(use case a○)

HLL [24] ✓ Array of counters
Skewness similar to the HLL sketch
used as reference for use case a○.

PCSA [25] Array of bit-vectors
KVM [7] Stores up to 𝑘 minimum values
Fast-AGMS [17] Array of counters
BeauCoup [15] Bitvector

Quantile
(use case b○)

DDSketch [40] ✓ Array of counters Skewness similar to DDsketch used as
reference for use case b○. High-level
KLL compactors not fully allocated.

Circllhist [29] Array of counters
KLL [34] Array of compactors

Flow Size
(use case c○)

Count-Min Sketch [18] Array of counters Sparse when high accuracy is needed.ECM-sketches [45] Count-min sketch over sliding windows
Elastic Sketch [63] ✓ Split heavy and light flows Similar to CMS, the light part can be

sparsified for high accuracy.LearnedSketch [30] Split heavy and light flows with ML
Entropy EntropySketch [38] Up to 𝑘 counters for stream entropy estimation.

a○ Super spreader detection. HLL [24] is a data structure for cardinality estimation based on
the probabilistic counting method developed in [25]. An HLL sketch is composed of𝑚 counters 𝑐𝑖 ,
and for each item 𝑥 , one of the counters is selected using a hash function and updated as follows
𝑐𝑖 =𝑚𝑎𝑥 (𝑐𝑖 , 𝜌 (ℎ(𝑥)), where 𝜌 () denotes the position of the leftmost 1 in ℎ(𝑥) binary representation.
After seeing𝑛 distinct items, from a statistical point of view, 𝑐𝑖 roughly approximates 𝑙𝑜𝑔2 (𝑛). Hence,
the overall cardinality can be estimated as the harmonic mean of the values 2𝑐𝑖 from the HLL
counters. On the one hand, using a large number of counters𝑚 reduces the estimation error. On the
other hand, the use of many counters leads to sparse HLLs, as the number of distinct flow counters
updated is proportional to the cardinality itself, which is typically small. For example, on a CAIDA
trace, less than 10% of sIP have a cardinality higher than 3 (90% of the HLLs only use three out of
the𝑚 allocated counters). However, knowing in advance which flows will have high cardinality is
challenging. Given this large number of unused counters, moving to a sparse HLL representation
can significantly reduce the memory footprint of a super spreader detection system.
b○ Packet IAT distribution. DDSketch [40] is a data structure used to estimate the quantiles for a
set of real positive values. Given a multiset 𝑆 of size 𝑛 over R, the 𝑞-quantile 𝑥𝑞 ∈ 𝑆 is the item 𝑥

whose rank 𝑅(𝑥) in the sorted multiset 𝑆 is ⌊1 +𝑞(𝑛 − 1)⌋ for 0 ≤ 𝑞 ≤ 1, where the rank 𝑅(𝑥) is the
number of elements in 𝑆 smaller than or equal to 𝑥 . A DDSketch comprises𝑚 counters tracking
the number of values falling in a range [𝛾𝑖−1, 𝛾𝑖 ], with 𝛾 depending on the required accuracy [40].
To insert a new measured value 𝑣 in the DDSketch, its corresponding index is computed, and the
counter at that index is incremented by 1. The 𝑞-quantile estimation 𝑥𝑞 is computed by iteratively
summing the counters from the first one, stopping once the sum is bigger than 𝑞(𝑛 − 1). The
quantile is then estimated by 2𝛾𝑤/(𝛾 + 1) where𝑤 is the bin from the last iteration. DDSketch can
be modified to accept a limited number of bins𝑚 depending on the desired accuracy 𝛼 . It is worth
highlighting that in per-flow IAT monitoring, most DDSketch counters are left to zero, as most
flows consist of only a few packets, and samples, e.g., IAT, tend to cluster around a few values. Thus,
an efficient sparse DDSketch representation would significantly reduce its memory requirements.
c○ Flow size estimation. ElasticSketch [63] is among the state-of-the-art for flow size estimation.
It comprises i.e., heavy and light parts storing elephant and mouse flows respectively. A technique
called ostracism is used to identify the mouse flows that will be monitored using the light part.
The heavy part comprises multiple hash tables with per-flow counters, while the light part is a
Count-Min Sketch (CMS) [18]. One of the effects of segregating elephants in the heavy part is that
the CMS can be composed of a single row (𝑑 = 1) of 8-bit counters, thanks to the reduced number
of flows and their size. To achieve good accuracy, the CMS still needs to be dimensioned to keep
the amount of collisions considerably low. This means budgeting a large number of counters, even
though most of them are left to zero making the CMS sparse.
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3 DESIGN
In this section, we first describe the architectural components of a generic monitoring system data
plane, cf. Figure 3. We then detail and contrast two approaches: a baseline that allocates one full
sketch per monitored flow, and its corresponding SPADA representation that only stores non-zero
counters. We propose two alternative SPADA representations that improve over the baseline in
terms of memory footprint with different trade-offs. Finally, we discuss the pros and cons of each
representation and analyze SPADA memory sizing.

3.1 Architectural components
Flow Map. In the data plane, a first component performs a FlowToSketch mapping to associate
incoming flow packets to a specific sketch in the system. This Flow Map takes as input a flow
key (e.g., the packet TCP/IP 5-tuple) and outputs a SketchID. Note that the way the mapping is
performed might depend on the monitoring use case. The mapping can be direct, i.e., a flow stored
in the Flow Map is associated with a specific sketch (cf. Figure 1a), or indirect, i.e., if a flow is not
in the Flow Map, then it is associated with a default sketch as in [63] (cf. Figure 1b). Finally, flows
stored in the Flow Map can be associated with additional flow metadata, e.g., last packet timestamp.
Sketch Data. The SketchID retrieved from the Flow Map is used to access the measurement
counters that need to be updated for a particular flow. These counters are stored in the second
component, which we refer to as Sketch Data. Based on the monitoring task, this component may
store different things. For instance, in the case of per-flow IAT quantile estimation, the SketchID is
used to access a dedicated per-flow DDSketch. Aside from the specific way information is structured
within the Sketch Data, from a high-level perspective it is an architectural component that stores
one or multiple sketches and provides access to the monitoring counters associated with a specific
flow, sometimes shared with other flows.
Monitoring routine. In a measurement epoch, the system data plane updates the counters stored in
the Sketch Data based on incoming packets, as depicted in Figure 3 (left). First, at packet arrival, the
flow key (e.g., 5-tuple) is extracted and the Flow Map is queried to retrieve the associated SketchID,
optionally updating any flow metadata. Second, the SketchID is used to access the Sketch Data
and locate the sketch for the flow. Finally, depending on the monitoring task, the measurement
associated with the last packet is used to determine one index within the sketch and modify the
corresponding counter. For IAT quantile estimation for example, the last IAT value is mapped to a
sketch bucket with the DDSketch algorithm, and the counter therein is incremented. At the end of
the epoch, the Flow Map and Sketch Data are read by the control plane, which reconstructs per-flow
sketches by looking up all counters belonging to a flow and computes the required metrics.
Notations. SPADA design is based on the assumption, justified by our experiments, that among𝑚
sketch counters the ratio 𝑝 of non-zero ones is typically small. In order to quantify the memory
footprint of the monitoring system data plane, we define 𝑛𝑢 = 𝑝 ·𝑚 as the average number of
sketch counters different than zero, i.e., the lower 𝑛𝑢 , the higher the sparsity. With SPADA, we
provide a series of memory reduction techniques whose efficiency is inversely proportional to 𝑛𝑢 .
To analytically estimate the efficiency of SPADA, we derive their memory footprint by using the
notation reported in Table 2.

Table 2. Summary of main notation.

Symbol Meaning Symbol Meaning
𝑛𝑠 number of sketches to store (e.g., one per flow) 𝑠𝑐 size (in bits) of a single sketch counter
𝑠𝑘 size (in bits) of the flow key 𝑝 ratio of useful (non-0) counters in a sketch
𝑚 number of sketch counters (buckets) 𝑛𝑢 average number of non-0 counters in a sketch
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Fig. 4. (a) Baseline Flow Map and Sketch Data representations in a traditional per-flow monitoring data plane,
and (b), (c) apply SPADA representation to the SketchData through two possible implementations.

3.2 Baseline components
Flow Map. A simple direct FlowToSketch mapping can be realized using a MAT to provide a
unique SketchID for every incoming flow. Given the huge number of entries required, this approach
is not suitable for handling previously unknown flows. Instead, it requires populating the Flow Map
statically from the control plane with a known set of flows to monitor. Another solution consists of
using a hash of the flow key as SketchID. Although this simple approach suffers from collisions, it
can be used when approximate measurements are acceptable. Between these two simple options,
there is a wide range of possibilities trading off accuracy for memory efficiency.

A unique, direct, FlowToSketch mapping can be realized with a CHT. CHT provides a constant
lookup time and a high memory utilization, thus is widely used to implement this kind of per-flow
mapping. However, this solution requires a careful design: whereas cuckoo hashing is feasible in
programmable data planes, it relies on several stages and has non-constant insertion time which is
handled by packet recirculation that may severely impact the system performance. In Section 4,
we provide P4 implementation details and show how to reduce recirculation impact. Regardless
of the Flow Map implementation, whenever a new FlowToSketch mapping is needed, i.e., when a
packet from a previously unseen flow key is received, a new SketchID can be obtained from a free
ID counter. Then, the <flow key, SketchID> mapping is stored in the CHT. Note that using a
counter to generate unique SketchIDs does not constitute a limitation since the system is designed
for epoch-based measurements and the counter is reinitialized at the beginning of each epoch.
Finally, we note that an indirect FlowToSketch mapping can be realized using the Flow Map as a
filter. This means that flows stored in the Flow Map are monitored using their metadata while the
remaining ones are monitored via a separate sketch, as it is done in ElasticSketch [63].
Sketch Data. A simple way of storing measured values is to allocate enough memory for all the
counters required by every per-flow sketch. Hence, in the baseline implementation, the Sketch
Data component is a list of full sketches, indexed through the SketchID that corresponds to the
location of the first bucket of the sketch as depicted in Figure 4a. For instance, in the case of per-flow
IAT quantile estimation, the SketchID is used to locate the first bin of the DDSketch dedicated
to a particular flow. At that point, the bin to be modified is retrieved simply as an offset from the
SketchID (i.e., SketchID + bin). Note that, depending on the specific task, a dedicated per-flow
sketch might not be required, e.g., ElasticSketch only requires a single Count-Min Sketch.
Memory footprint.We derive the memory needed by the baseline described above assuming that,
within one epoch, the monitoring system requires 𝑛𝑠 different sketches, i.e., one sketch per flow,
considering 𝑛𝑠 expected different flows. With a CHT1 Flow Map, the memory requirement is:

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑠 · (𝑅𝑜𝑤𝐹𝑀−𝐶𝐻𝑇 + 𝑅𝑜𝑤𝑆𝐷−𝐵𝑎𝑠𝑒 ) (1)

1We note that the CHT cannot be filled up to 100% [36] and the expected number of flows needs to be overestimated.
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where 𝑅𝑜𝑤𝐹𝑀−𝐶𝐻𝑇 and 𝑅𝑜𝑤𝑆𝐷−𝐵𝑎𝑠𝑒 are the memory required to store an entry in the Flow Map
and a sketch in the Sketch Data respectively. 𝑅𝑜𝑤𝐹𝑀−𝐶𝐻𝑇 and 𝑅𝑜𝑤𝑆𝐷−𝐵𝑎𝑠𝑒 can be defined as:

𝑅𝑜𝑤𝐹𝑀−𝐶𝐻𝑇 = 𝑠𝑘 + ⌈𝑙𝑜𝑔2 (𝑛𝑠 )⌉ 𝑅𝑜𝑤𝑆𝐷−𝐵𝑎𝑠𝑒 =𝑚 · 𝑠𝑐
where 𝑠𝑘 and ⌈𝑙𝑜𝑔2 (𝑛𝑠 )⌉ are the flow key and the SketchID bit sizes respectively, while𝑚 and 𝑠𝑐
are the number of sketch counters and their size in bits. Note that independently from the Sketch
Data, the Flow Map size could be further decreased by saving key fingerprints i.e., less than 𝑠𝑘 bits.

3.3 The SPADA representation
In this section, we describe the SPADA representation for the Sketch Data. The main idea is to
replace per-flow sketches with a series of non-zero counters, addressable with the pair <SketchID,
index>where index is the sketch counter position in the logical per-flow sketch. The key difference
with respect to the baseline is that the memory required by each sketch depends on the number of its
non-zero elements. Indeed, while the baseline Sketch Data statically reserves an entire sketch upon
receiving the first packet of a flow, SPADA creates a “virtual sketch” by reserving a unique SketchID
whenever a new flow is received, and dynamically assigns pre-reserved counters whenever a new
<SketchID, index> pair is required. We design two possible implementations of the sparse Sketch
Data: the first one uses a qCHT, while the second one uses a modified version of the Invertible
Bloom Lookup Table (IBLT), namely perfect IBLT (pIBLT). While the former has the drawback of
requiring data plane recirculation, it provides additional flexibility compared to the pIBLT, as the
latter can only be used with sketches whose update operation consists of a linear increase.

3.3.1 Sparse Sketch Data with qCHT. This version of the Sketch Data is based on a Cuckoo Hash
Table (CHT), a key-value data structure with constant lookup time. As shown in Figure 4b, we
use <SketchID,index> pairs (of 𝑢 bits) as CHT keys and use it to store non-zero counters. A CHT
comprises 𝑑 tables (𝑑 = 4 in our settings), hence <SketchID,index> pairs are hashed 𝑑 times to
generate one index per table. The CHT stores both key and value, and key conflicts are resolved by
moving entries across the various tables; this comes at the price of a non-constant insertion time.
To reduce the size of keys in the table, SPADA uses a CHT with quotienting (qCHT). A qCHT relies
on 𝑑 bijective functions to hash the keys, uses the least 𝑟 significant bits of the hashes to index the
tables, and only stores the remaining 𝑢 − 𝑟 bits for conflict resolutions instead of the whole key of
𝑢 bits. A full description of the CHT and of the quotienting technique is provided in Appendix A.1.
Memory footprint. Before analytically deriving the memory required by a qCHT Sketch Data, let
us first analyze the simpler case of a sparse Sketch Data using a CHT:

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑠 · (𝑅𝑜𝑤𝐹𝑀−𝐶𝐻𝑇 + 𝑛𝑢 · 𝑅𝑜𝑤𝑆𝐷−𝐶𝐻𝑇 ) (2)

where the first part of the equation is the memory required for a CHT Flow Map as for the baseline
while the second part is the size of one entry in the sparse Sketch Data with CHT, multiplied by the
expected number of non-zero sketch counters 𝑛𝑢 . We can then express 𝑅𝑜𝑤𝑆𝐷−𝐶𝐻𝑇 as follows:

𝑅𝑜𝑤𝑆𝐷−𝐶𝐻𝑇 = (⌈𝑙𝑜𝑔2 (𝑛𝑠 ·𝑚)⌉) + 𝑠𝑐
where ⌈𝑙𝑜𝑔2 (𝑛𝑠 ·𝑚)⌉ is the size of each key stored in the CHT, i.e., <SketchID, index>, and 𝑠𝑐
the size of each counter in bits. Now that we have derived the memory requirement of the sparse
Sketch Data using a simple CHT, let us detail the case when using a qCHT. Since we use a qCHT
composed of 4 tables, each table contains up to (𝑛𝑠 · 𝑛𝑢)/4 elements. Therefore, it can be addressed
by using only 𝑟 = ⌈𝑙𝑜𝑔2 (𝑛𝑠 · 𝑛𝑢/4)⌉ bits instead of 𝑢 = ⌈𝑙𝑜𝑔2 (𝑛𝑠 ·𝑚)⌉, i.e., the full length of the key.
To detect collisions, the remaining 𝑢 − 𝑟 quotient bits are stored in the table:

𝑢 − 𝑟 = ⌈𝑙𝑜𝑔2 (𝑛𝑠 ·𝑚)⌉ − ⌈𝑙𝑜𝑔2 (𝑛𝑠 · 𝑛𝑢/4)⌉ ≈ 2 + 𝑙𝑜𝑔2 (𝑚/𝑛𝑢) = 2 + 𝑙𝑜𝑔2 (1/𝑝).
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The memory requirements for the sparse Sketch Data using qCHT can be summarized as:
𝑅𝑜𝑤𝑆𝐷−𝑞𝐶𝐻𝑇 ≈ (2 + 𝑙𝑜𝑔2 (1/𝑝)) + 𝑠𝑐 .

It is worth noting that 𝑢 − 𝑟 is small since the sparse Sketch Data stores a significant fraction of the
items in the <SketchID, index> universe. This is a quite different setting compared to the Flow
Map one, as in the latter case the key size may exceed 100 bits, leading to negligible savings.
Example. To provide a rough idea of SPADA-qCHT memory saving, we report here a concrete
monitoring use case for b○ IAT quantile estimation. We use the 5-tuple as flow key, a DDSketch
with𝑚 = 64 counters, i.e., bins, of size 𝑠𝑐 = 8 bits. Assuming a conservative bin usage ratio2 of
𝑝 = 0.15 and small 𝑛𝑠 = 100𝐾 number of sketches, the baseline implementation requires 7.9MB
overall, of which 6.4MB for the Sketch Data store. SPADA-qCHT requires a 1.5MB Flow Map and a
1.5MB sparse Sketch Data, for 3MB overall (62% memory saving). Note that savings result from
both the quotienting technique and sparse representation: a sparse Sketch Data using CHT without
quotienting would lead to an overall memory footprint of 5.2MB (35% memory saving).
Limitations. SPADA-qCHT has two main drawbacks. First, each non-zero counter requires more
memorywith respect to its baseline counterpart. Indeed, we store the quotient of the key <SketchID,
index> in addition to the counter itself. However, this overhead is greatly compensated by the
fact that only non-zero counters are stored. Memory saving thus depends on the sparsity factor
𝑝: the lower 𝑝 , the more negligible this per counter overhead, leading to higher memory savings.
A quantitative analysis of this effect can be appreciated in Section 3.4 where we show memory
savings at different sparsity factors. The second drawback is that CHTs in programmable data
planes are challenging as they require a non-constant number of memory accesses at insertion time,
which might not be acceptable on constrained hardware. In Section 4.2 we address this challenge
and propose a CHT implementation compatible with programmable data planes.

3.3.2 Sparse Sketch Data with pIBLT. To overcome the limitations of qCHT, we propose an al-
ternative SPADA representation based on Invertible Bloom Lookup Table (IBLT), a structure that
provides key-value counters with a fixed number of memory accesses. IBLT aggregates multiple
keys within the same bucket, while each key is stored in 𝑑 separate buckets in order to resolve
collisions (cf. Appendix A.2). Using IBLT introduces two challenges. First, the per-bucket overhead
is higher than the qCHT, as each entry requires a key counter i.e., the number of keys stored in
a bucket, the XOR of all the colliding keys, and the sum of all the values associated to such keys.
Second, to extract stored values, the IBLT uses a peeling procedure named ListEntries, that
imposes a strict upper bound to the load factor, i.e., 82% achieved using 𝑑 = 3 [58].

We propose an improved IBLT that uses a bitmap 𝐵 to keep track of <SketchID, index> pairs
i.e., it features 2𝑢 = 𝑛𝑠 ·𝑚 bits, one for each possible pair. We call this modified structure perfect
IBLT (pIBLT). Differently from a IBLT, our pIBLT does not need to store XORed keys to take note
of which ones contribute to the corresponding counter. Instead, such information is retrieved from
the bitmap 𝐵. Besides, the bitmap removes false positives and does not require peeling to retrieve
entries that can derived by solving a system of linear equations 𝐴 · x = b, where 𝑎𝑖 𝑗 ∈ {0, 1}
indicates whether 𝑘𝑒𝑦 𝑗 contributed to counter 𝑏𝑖 . We detail the new ListEntries procedure3 in
Algorithm 1. The Sketch Data implemented using pIBLT is illustrated in Figure 4c. We use a pIBLT
with 𝑑 = 4 tables, each indexed using a different hash function and featuring 𝑛𝑠 · 𝑛𝑢/4 locations.
Each location simply stores the sum of the counters. At each update, the 𝑑 counters associated
with the <SketchID, index> pair are incremented, and the corresponding bit in the bitmap is set.
2Sparsity factors extracted from real traffic traces used in the evaluation of Section 5 are between 0.003 and 0.16.
3Note that the ListEntries procedure is only executed in the control plane after a measurement epoch. Therefore, the
time needed to solve the linear system does not introduce any overhead in the data plane monitoring pipeline.
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Algorithm 1 pIBLT ListEntries
Require: 𝐵 [],𝑇0 [] . . .𝑇𝑑−1 [], Initialize: all 𝑎𝑖 𝑗 = 0; initialize 𝑏𝑖 values from counters in 𝑇0 [] . . .𝑇𝑑−1 []
1: for 𝑗 ∈ [0 . . . 2𝑢 − 1] do
2: if B[j]==1 then
3: save key 𝑘𝑒𝑦 𝑗 (i.e., a pair <SketchID, index>)
4: for all 𝑖 ∈ {ℎ0 (𝑘𝑒𝑦 𝑗 ), . . . , ℎ𝑑−1 (𝑘𝑒𝑦 𝑗 )}, set 𝑎𝑖 𝑗 = 1
5: solve the linear system 𝐴 · x = b
6: return pairs 𝑘𝑒𝑦 𝑗 , 𝑥 𝑗 for all saved keys

It can be proven [19, 20, 46] that𝐴·x=b has a unique solutionwith high probability (cf. Appendix A.2)
when the load factor is below a threshold 𝑐𝑘 . For 𝑑 = 4, 𝑐𝑘 = 0.97, which is higher than the IBLT
peeling threshold i.e., 0.82. Even if the probability that 𝐴 · x=b does not have a unique solution is
small, we remark that in this case, it is possible to derive an approximate resolution. For example,
in PR-Sketch [53] an iterative method provides the solution with minimum ℓ2-norm. FlowLidar [42]
presents an alternative method based on an initial peeling phase removing dependent rows from 𝐴.
Memory footprint. For the pIBLT, the memory requirements can be expressed as:

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑠 · (𝑅𝑜𝑤𝐹𝑀−𝐶𝐻𝑇 + 𝑛𝑢 · 𝑠𝑐 ) + 𝑛𝑠 ·𝑚 (3)

where the space occupied by the CHT Flow Map is the same as the baseline, 𝑛𝑢 · 𝑠𝑐 is the space
occupied to store the counters of a single sketch, and 𝑛𝑠 ·𝑚 is the size of the bitmap 𝐵. Similarly to
the qCHT version, the advantages of using a pIBLT Sketch Data in place of the baseline diminishes
with increasing values of 𝑝 , i.e., with an increasing number of non-zero counters. In Section 3.4, we
detail the trade-offs of using SPADA in place of the baseline, comparing the two proposed solutions
based on qCHT and pIBLT in multiple settings providing insights on memory sizing practices.
Example. We now highlight the SPADA-pIBLT memory footprint referring to the same use case b○
as in Section 3.3.1. As the Flow Map is the same, its required memory remains 1.5MB. Concerning
the Sketch Data, we need 800KB for the bitmap, that is, one bit for each possible <SketchID, index>
pair, while the 4 tables require 𝑛𝑠 · 𝑛𝑢 · 𝑠𝑐 = 960KB. Therefore the total memory is around 3.26MB,
which is similar to the case of the qCHT, i.e., 60% smaller compared to the baseline.
Limitations. We remark that pIBLT supports only additive counters e.g., used in CMS, DDSketch,
hence it is not suitable for HLL since it requires reading values at update time. Furthermore, with a
qCHT Sketch Data, increasing𝑚, i.e., the number of buckets of each sketch, has negligible impact
on the memory size. This is not true for the pIBLT Sketch Data, as the size of the bitmap storing
the non-zero <SketchID, index> pairs grows linearly with the number of buckets.

3.4 Analysis of memory sizing
To benefit from SPADA, it is paramount to accurately size the Sketch Data based on a worst-case
sparsity factor 𝑝 . Despite allowing flexible bucket assignments across different flows, our solution
requires fixing the total number of non-zero buckets in practice. If the average 𝑝 of the data is
higher than the expected one, the Sketch Data reaches its critical load factor, making new insertions
impossible. In this section, we analyze the relationships between sparsity, the number of flows
to be monitored, and the required memory size. This analysis breaks down the advantages that
SPADA can bring in practice and provides an insight into proper system configuration based on the
available memory and the number of flows to monitor. The baseline Sketch Data memory footprint
depends on (i) the number of flows 𝑛𝑠 to monitor, i.e., number of sketches in most use cases, and
(ii) the desired accuracy, i.e., buckets per sketch𝑚. SPADA Sketch Data memory footprint instead,
depends on a worst-case sparsity assumption, i.e., average ratio of non-zero counters per sketch 𝑝 .
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Fig. 5. Relationship between data sparsity 𝑝 and memory requirements of SPADA data structures.

Figure 5a depicts the Sketch Data memory footprint for the three implementations varying 𝑝 ,
assuming 𝑛𝑠 = 100𝐾 sketches with 𝑚 = 64 buckets each, and a bucket size 𝑠𝑐 = 8 bits. The plot
also reports the sparsity factors for two reference use cases, i.e., a○ super spreader and b○ IAT
quantiles estimation, extracted from the worst-case trace used in our evaluation (cf. Table 4 for
further details). We remark that the pIBLT bitmap introduces a constant cost that is relatively high
when 𝑝 is small, i.e., data is highly sparse; this disadvantage diminishes for higher values of 𝑝 , as
the pIBLT does not use extra memory to store the key of each bucket like the qCHT. For 𝑝 >0.25
the disadvantage of the bitmap disappears and the qCHT requires slightly more memory. In general,
both solutions greatly outperform the baseline even for very conservative sparsity assumptions
(up to 𝑝≈0.75). Finally, we remark that the vanilla CHT is not a good solution for the Sketch Data
implementation in most cases, as it occupies more memory than the baseline when 𝑝≈0.3.
Figure 5b contrasts the required Sketch Data memory with the number of monitored flows

providing an insight on how to properly set up SPADA based on the system requirements. For
instance, assuming that 10MB are pre-allocated for the Sketch Data, a baseline implementation
would allow to monitor ≈150𝐾 flows, while SPADA can monitor ≈400𝐾 assuming a worst-case
𝑝 =0.3. Finally, Figure 5c shows the trade-off between the number of monitored flows and desired
monitoring accuracy, i.e., number of buckets per sketch𝑚, for 10MB of available memory. Based
on the number of desired flows, one can adjust the expected sparsity factor 𝑝 to reach the desired
monitoring precision: with 500K flows, setting 𝑝 = 0.3 only grants 𝑚 ≈ 50 counters per sketch,
while 𝑝 = 0.2 brings𝑚 to ≈ 70. We highlight that properly selecting 𝑝 , hence sizing the system
accordingly, requires additional considerations based on historical knowledge, traffic predictions,
and the purpose of the monitoring system itself. In extreme cases when worst-case 𝑝 exceeds
expectations, SPADA can stop adding new counters or start allowing sharing them across different
flows at the cost of losing accuracy with respect to the original per-flow sketch, as it would happen
for non-SPADA structures with more memory. Nevertheless, we remark that, as highlighted in
Figure 5a, the memory trade-off provided by SPADA is better when compared to a non-sparse
implementation, even for very conservative sparsity assumptions.

4 IMPLEMENTATION
We implement SPADA using the Xilinx Vitis Networking P4 [4]. The framework translates P4
code into Intellectual Property blocks for AMD-Xilinx FPGAs. Such blocks can then be integrated
into a wrapper, as the AMD Xilinx OpenNIC Shell [2] or the NetFPGA-PLUS [43], which provide
basic networking functionalities, and deployed in an FPGA-based SmartNIC. Our implementation
exploits the NetFPGA-PLUS reference NIC using the Xilinx Alveo U280 (2×100Gbps QSFP, 8GB
DDR, 41MB SRAM, 1M Look-up Tables, and 2M Flip-Flops) as target board. All the processing
pipelines are clocked at 180 MHz, which is the standard frequency for the NetFPGA-PLUS datapath.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 27. Publication date: December 2023.



27:12 Andrea Monterubbiano et al.

FIFO

 Metadata

Deparser 
Engine

Headers(in)

(out)(in)

Parser

Headers

(in)

(out)

(out)

(out)  Metadata

Match-Action 
Engine

Headers

Payloads Payloads

(in)

(in)

(out)

(out)

 Metadata

Control Plane

 Metadata

To/From User 
Externs

Metadata

Packet 
AXIS

Packet 
AXIS

(in)

(a) Vitis Networking P4 Architecture.

LB
In

Single pipeline

AG

Recirculation
Forwarding

Out

CountersQuotient

T0 T1 T2 T3 Stash

CountersQuotient

T0 T1 T2 T3 Stash

CountersQuotient

T0 T1 T2 T3 Stash

CountersQuotient

T0 T1 T2 T3 Stash

(b) P4 pipeline for CHT and qCHT.

Fig. 6. Details of P4 FPGA programming framework and CHT and qCHT implementation pipelines.

In the following, after a brief Vitis Networking P4 architecture overview, we detail basic SPADA
data structures implementations, and two full-fledged SPADA monitoring pipelines synthesized for
the Xilinx Alveo U280 FPGA contrasting them with baseline designs.

4.1 The Vitis Networking P4 architecture
The Vitis Networking P4 architecture (cf. Figure 6a) is composed of three main blocks: (i) a parser,
(ii) a match action engine, and (iii) a deparser. Extern blocks are directly implemented in Verilog
HDL and can be added to the P4 pipeline using a configurable interface. In our prototype, we use
externs to deploy data plane accessible registers, similar to those in Banzai [54] or Tofino [3].

4.2 SPADA building blocks
SPADA monitoring pipelines can be built using two of the following building blocks: MAT, (q)CHT,
and pIBLT. Here, we detail their implementation in Vitis Networking P4while the required hardware
resources with the Xilinx Alveo U280 FPGA-based Smart-NIC as target are deferred to Appendix C.
Match Action Table. The MAT is the basic programming unit offered by the P4 language abstrac-
tion. Each MAT is defined by: what data to match on, a list of possible actions, and an optional
number of properties, e.g., size, default action, etc. In SPADA, the MAT can be used to implement
the Flow Map when FlowToSketch mappings are statically pushed from the control plane. Its
implementation in the Vitis P4 framework is directly supported by the compiler and requires
specifying the matching key, the algorithm (exact or ternary, the action), and the table length. The
resulting block offers an AXI4 interface that can be wired to the control plane to populate the MAT.
We implement two different MATs: one matching on source IP for cardinality estimation (use case
a○), and one matching on TCP/IP 5-tuple for IAT quantile estimation (use case b○). Both MAT
actions consist of writing in the packet metadata an integer SketchID.
Cuckoo Hash Table with quotient. In SPADA the CHT, optionally with quotienting when
needed, can be used for the Flow Map or the Sketch Data. Its P4 implementation requires 𝑑 hash
functions (implemented with externs in the Vitis P4 framework) to compute the table indexes.
Unlike the MAT, implementing a CHT in P4 is challenging due to its non-constant insertion time.
Indeed, when all designated CHT indexes for an item are occupied, one of them is randomly chosen,
replaced, and reinserted elsewhere. This would require accessing the same memory multiple times
in a pipeline, which is not allowed in P4. Hence, CHT insertion may force recirculating keys
and values (as we are monitoring, packets can be forwarded normally), potentially impacting the
processing rate of the forwarding pipeline. To mitigate this problem, we implement a CHT with
four tables, i.e., 𝑑 =4, augmented with a small memory called stash [36] that enables fixed insertion
time via lazy recirculation. The high-level architecture of the simple P4 pipeline is depicted in
Figure 6b (top). At key insertion, the packet first traverses the different pipeline modules one by
one, each implementing a single table𝑇𝑟 . If a free position is found, then the item is inserted4 there;
4Our system is based on a per-epoch measurement approach in which elements are deleted only at the end of an epoch.
Hence it is safe to insert a key in the first available slot without checking if the key is already present in a subsequent table.
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Table 3. Prototypes resources utilization.
UC Pipeline LUT [K - %] LUTRAM [K - %] FF [K - %] BRAM [# - %]
- NetFPGA 125.6 - 9.6 17.1 - 2.8 201 - 7.7 279 - 13.8

a○
HLL Basline 401.7 - 30.8 186.1 - 30.9 225.2 - 8.6 354 - 17.5
SPADA-HLL (static, 4 datapaths) 206.9 - 15.8 67.3 - 11.1 329 - 12.61 358 - 17.7

b○
DDSketch Baseline 388.7 - 30 187 - 31 237.5 - 9.1 390 - 19.3
SPADA-DDSketch (static) 183.1 - 14 57.4 - 9.5 241.7 - 9.3 390 - 19.3

c○ ES Baseline 387.2 - 29.7 193.8 - 32.2 227.3 - 8.7 282 - 13.9
SPADA-ES 185.9 - 14.2 66.8 - 12 248.1 - 9.5 282 - 13.9

otherwise, the key is stored in the next free slot in the stash5. The recirculation process is triggered
whenever a stash insertion makes it exceeds a predefined threshold. In this case, we randomly pick
a table 𝑇𝑟 and insert the evicted item into it, replacing any previously stored item. The replaced
item then traverses the pipeline starting from block 𝑟 , looking for an empty memory slot among its
other designated positions in other tables. If an empty slot is found, the item is inserted there, and
the recirculation process ends; otherwise, it is stored in the stash, triggering another recirculation.
This solution has the drawback of only recirculating one item at a time. To overcome this

limitation, we stack up to four (smaller) CHT that operate on parallel datapaths fed by a hash-based
load balancer. Each datapath features its own stash, and recirculation is triggered on all datapaths at
the same time. We call this mechanism “batch recirculation” since a single recirculation step moves
more than one item at a time. Note that different recirculation policies might be implemented,
e.g., recirculate when one (aggressive) or all (conservative) stashes reach the threshold. Finally, an
output aggregator is responsible for recomposing a single output stream of packets.
Perfect IBLT. Due to its simple insertion routine, implementing the pIBLT in P4 does not present
particular challenges. Similarly to the CHT, the P4 code employs four externs for hashes used to
identify the indexes within each table, and another one for both the bitmap and the buckets.

4.3 SPADA-enabled monitoring pipelines
In this section, we use the building blocks described above to implement pipelines for use cases a○,
b○, and c○ and wrap them in the NetFPGA-Plus architecture [43]. The pipelines feature three P4
blocks: (i) a MAT or CHT for the Flow Map, (ii) a middle block that computes the sketch index, and
(iii) a pIBLT or qCHT for storing the sparse Sketch Data. Table 3 contrasts the basic NetFPGA-Plus
reference NIC hardware requirements to the ones for HLL, DDSketch, and ElasticSketch (with
𝑚 = 32 and 𝑠𝑐 = 16 bits) wrapped in this reference NIC. It also details resource usage for static
and dynamic versions as well as monitoring system baselines described in Section 3.2. In general,
we remark that the additional hardware requirements to deploy our monitoring data plane on
top of the NetFPGA-Plus reference NIC architecture are marginal, i.e., ≈ +10%. Additionally, we
note that baseline implementations require ≈ 2× hardware resources with respect to their SPADA
counterparts and would be able to accurately monitor fewer flows in the data plane.
HLL.We implement the HLL sketching algorithm for super spreader detection (use case a○) in two
steps within the second and third P4 blocks above. The middle block relies on a single extern to
compute the hash of the destination IP and uses the output to (i) identify the index of the HLL sketch
bucket, and (ii) compute the value to be stored in the bucket, i.e., the number of consecutive leading
zeroes. The bucket index is concatenated to the SketchID to build the key <SketchID, index>,
and both key and value are attached to the packet as metadata. Finally, the block implementing the
Sketch Data is responsible for checking whether the newly computed value is greater than the one
currently stored, and replacing it if so. For HLL we use smaller 𝑠𝑐 = 8 bits counters.
5The same key might be stored twice in the stash, hence possibly recirculated in two separate tables. However, at the end of
the measurement epoch, any duplicated value is reconciled by the control plane resolving potential conflicts. We expect this
phenomenon to be limited since CHTs are reset at each epoch and packets of the same flow may fall in separate counters.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 27. Publication date: December 2023.



27:14 Andrea Monterubbiano et al.

DDSketch. For IAT quantile estimation (use case b○), the Flow Map stores the SketchID and the
timestamp of the last packet for each flow. The latter is used to compute the IAT upon reception of
a new packet. The IAT value is attached to the packet as metadata and used by the middle block to
identify the relevant DDSketch bin index through a small MAT table. In particular, we select the
longest prefix matching between the current IAT value and precomputed delimiters of DDSketch
buckets. The key is built using the <SketchID, index> pair and written in the packet metadata.
The last block is responsible for incrementing the counter stored in the corresponding bucket.
ElasticSketch. For flow size estimation with ElasticSketch [63] (use case c○), the first P4 block
implements the Flow Map: four hash tables constituting the heavy part that stores elephant flows. In
particular, every flow key is associated with an exact packet counter and positive and negative votes
to implement the ostracism mechanism. Flows identified as mice by the ostracism are dynamically
evicted. Mice flows are stored in a separate Sketch Data: a single-row Count-Min Sketch (CMS). The
second P4 block computes a hash on the flow key for mice flows, thus identifying the corresponding
bucket within the CMS, and attaches the index as user-defined metadata. Finally, the last block is
responsible for incrementing the relevant CMS bucket. Note that, as there is only one sketch, in
this case, the key for the Sketch Data is composed of the sole bucket index.

5 EVALUATION
In this section, we first evaluate SPADA on reference use cases using CAIDA 2016 [13] and
MAWI 2019 datasets [41] and a custom software simulator (available at https://github.com/cpt-
harlock/SPADA). We compare SPADA against state-of-the-art approaches in terms of memory
requirements and accuracy (when affected). Second, we evaluate the (q)CHT recirculation overhead
and discuss its feasibility in real systems. Finally, we also evaluate latency and throughput of our
FPGA implementation, both via real prototype experiments and with accurate Verilog simulations.

5.1 Use cases evaluation
To evaluate the efficiency of SPADA in a realistic scenario, we feed the simulator with 1-hour
CAIDA traces and 5-minute MAWI traces. In particular, we consider: (C1) 21/01/2016 13:00 –
14:00, (C2) 17/03/2016 14:00 – 15:00, (M1) 09/04/2019 22:15 – 22:20, and (M2) 09/04/2019 13:15 –
13:20. For CAIDA traces, we consider 1-second epochs, while for MAWI traces we use 1-minute
epochs since they feature fewer packets. We consider TCP traffic only from all traces. For a○ super
spreader detection, we use source IPs as flow keys and𝑚 = 64 or𝑚 = 128 counters for the HLL
sketches (error 13% and 9% respectively). For b○ IAT quantile estimation, we use 5-tuples as flow
keys and DDSketches with𝑚 = 32 or𝑚 = 64 counters each (relative error 𝛼 = 0.28 and 𝛼 = 0.14
respectively). Finally, for c○ flow size estimation we build a baseline ElasticSketch (ES) of 818KB,
divided into a heavy part of 318KB and a light part of 500KB (i.e., a CMS composed of𝑚=512K
8-bit counters). SPADA-ES allocates the same amount of memory to the heavy part (Flow Map),
uses a qCHT to store the light part (Sketch Data), and is tested using ES open source simulator [22].
Additionally, we evaluate a more accurate SPADA-ES “virtually” increasing the CMS size (𝑚=4M).

Table 4. Data structure parameters for each use case and their
sparsity values for traces C1, C2 and M1, M2.
Use
case

Parameters Sparsity factor
𝑠𝑘 𝑚 𝑛𝑠 C1 𝑛𝑠 C2 𝑛𝑠 M1 𝑛𝑠 M2 𝑝 C1 𝑝 C2 𝑝M1 𝑝M2

a○ 32 64 36K 11K 5.4K 7.6K 0.020 0.028 0.051 0.061
32 128 36K 11K 5.4K 7.6K 0.010 0.015 0.028 0.034

b○ 104 32 59K 31K 41K 100K 0.068 0.078 0.139 0.162
104 64 59K 31K 41K 100K 0.040 0.048 0.092 0.107

c○ 104 0.5M 59K 31K 41K 100K 0.085 0.025 0.039 0.124
104 4M 59K 31K 41K 100K 0.011 0.003 0.005 0.016

Table 5. ES and SPADA-ES accuracy for
traces C1, C2, and M1, M2.
Metric 𝑚 C1 C2 M1 M2

ARE ES 0.5M 0.10 0.01 0.05 0.30
SPADA-ES 4M 0.01 2E-3 6E-3 0.03

AAE ES 0.5M 0.16 0.02 0.12 0.97
SPADA-ES 4M 0.02 3E-3 5E-3 0.12

ER ES 0.5M 0.93 0.98 0.97 0.89
SPADA-ES 4M 0.99 0.99 0.99 0.98
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(a) Super spreader detection. (b) IAT quantile estimation. (c) Flow size estimation.
Fig. 7. Memory footprint for the reference use cases comparing SPADA with SOTA baselines.

In our simulations both Flow Map and Sketch Data are sized to keep the load factor below 90%, and
all (q)CHTs feature a stash with 16 additional buckets. Table 4 lists the main SPADA parameters for
uses cases a○, b○ and c○, also reporting the sparsity recorded for the various traces, expressed as
the average ratio of non-zero sketch counters 𝑝𝐶𝑖 , ranging from 0.003 to 0.162.
Memory occupancy. Figures 7a, 7b, and 7c contrast the memory occupied by the baseline and
SPADA monitoring system. Colored histograms average values across the epochs, with error bars
for min and max values when available. Overall, SPADA reduces memory occupancy from 2×
for b○ (DDSketch), 2.5× for c○ (ElasticSketch), to 11× for a○ (HLL). More precisely, the sparser
the baseline sketches, the higher the memory saving. As analyzed in Section 3.4, SPADA-pIBLT
requires more memory than SPADA-qCHT due to the additional bitmap. However, the memory
saving with respect to the baseline is still significant with the advantage of avoiding recirculation
in the Sketch Data component. Figures 7a, 7b, and 7c also show over-dimensioned SPADA memory
footprint using a conservative fixed value of 𝑝 , grey bars (we set 𝑝 to the double of the highest
value observed in each experiment — cf. Table 4). We remark that with qCHT and pIBLT Sketch
Data, memory reduction is still sizeable despite conservative settings. Conversely, as highlighted in
Section 3.4, for the CHT the per-counter overhead is too high, and hence its memory occupancy is
in practice similar, sometimes even higher, than the baseline (for 𝑝≈0.3).
Processing time for pIBLT lookup. At the end of the measurement epoch, the control plane
dumps the pIBLT content and solves the linear system associated with it. Note that, even though
this computation does not affect the data plane, the system needs to be solved before the end of the
next epoch to avoid overloading the resolution system. Since the resolution time of a linear system
is superlinear with respect to the number of equations, we use a first-level hash function to split
the rows of the pIBLT into a set of smaller disjoint linear systems. This reduces the computation
time and enables the use of multiple cores. In particular, with two threads of an Intel i7-10700K
CPU clocked at 3.80 GHz, the linear system of the pIBLT is solved in less than one second (960 ms).
We achieved this result by splitting the 128K rows of the linear system into 128 independent linear
systems of 1K rows each. The time needed for solving each of these systems is approx. 15 ms.
Flow size estimation accuracy.While for use cases a○ (super spreader) and b○ (IAT quantiles),
the estimation accuracy is not impacted, use case c○ (flow size estimation) requires additional
consideration. As shown in Figure 7c, with SPADA we can increase the CMS size𝑚 from 512K to
4M with minimal impact on memory. We now compare the accuracy of the baseline ElasticSketch
(ES) with our enhanced SPADA-ES. Table 5 reports Average Relative Error (ARE), Average Absolute
Error (AAE), and the fraction of flows for which the sketch provides the exact result (ER). We note
that, despite the much smaller memory footprint, SPADA-ES always provides better accuracy than
the baseline ES. In particular, SPADA-ES achieves one order of magnitude better AAE and ARE
than ES. Furthermore, SPADA-ES provides the exact count for more than 98% of flows in all traces,
whereas the standard ES tops at 98% only in C2 which is the trace featuring fewer flows.
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(a) w/ uniform random keys. (b) Overall — w/ real traffic. (c) Worst case — w/ real traffic.

Fig. 8. (a) CHT recirculation rate (top) and 90th percentile loop length (bottom) vs. load factor with random
keys. (b) Overall and (c) worst-case recirculation rate on real traces for super spreader detection.

5.2 Cuckoo Hash Table recirculation overhead
In this section, we evaluate the computational overhead of SPADA-qCHT due to CHT recirculations.
For simplicity, we assume asynchronous recirculation loops in our simulations, hence we never
experience insertion failures due to stashes overload. In this set of tests, we fix the number of CHT
slots to 216, with 16 additional slots for the stash, equally split among the available datapaths and
trigger recirculation when all stashes reach a threshold of 50%, unless otherwise specified.

Synthetic keys. We first run a stress test that consists of inserting random keys in the CHT until
a target load factor is reached. Figure 8a (top) shows the average recirculation rate when starting
from an empty CHT. We observe that when using a single datapath, the recirculation rate to reach
a load factor of 90% is 20%. This drastically improves when using four datapaths thanks to batch
recirculation. For what concerns a more aggressive policy, i.e., recirculate when at least one stash
reaches the threshold, when using 4 datapaths we report up to 26% more recirculations w.r.t. the
conservative policy (not shown for lack of space). This is due to recirculations triggered when
some stashes are still empty, thus wasting available datapaths. Figure 8a (bottom) provides the 90th
percentiles loop length when starting from non-empty CHT, i.e., we count recirculations that occur
when the CHT is at the target load in order to evaluate the recirculation overhead in the worst case.
We observe that, at 90% load, most packets trigger less than 4 recirculations (90th percentile) when
using a single datapath. Recirculation is halved when using 4 datapaths, so that 90% of the packets
at 90% load trigger at most 2 recirculations. Not shown for lack of space, average recirculation is
much lower: at 90% load, we measure 1.6 (resp. 0.6) loops per packet with 1 (resp. 4) datapath(s),
meaning that every insertion triggers less than one recirculation on average. Thus, in most cases,
the recirculation overhead is negligible and does not affect the system performance.

Real traces. We then evaluate SPADA-qCHT recirculation overhead on real traffic. Unlike the
previous analysis, we remark that on real traffic a large fraction of packets only update already
occupied <SketchID, index> pairs, thus not triggering any recirculation. Figure 8b reports the
recirculation rate with respect to the overall number of packets. This set of results refers to the HLL
use case a○ with𝑚 = 64 and𝑚 = 128. Simulations are performed using 1, 2, and 4 datapaths and
the CHT is dimensioned to reach 90% load factor. We observe an overall recirculation rate below
2% for a single datapath and around 0.5% when using 4 datapaths with CAIDA traces. Recirculation
rate drops drastically with MAWI traces as they feature much fewer flows, i.e., sIP in the HLL use
case a○. Our findings assess the feasibility of the recirculation approach in real scenarios as the
extra bandwidth required to recirculate is negligible. Figure 8c reports worst-case values, which
correspond to a fully loaded table (around 90%). In this case, the recirculation rate is much higher but
stays below 5% when 4 datapaths are used. Other data plane applications that exploit recirculation
exhibit similar (Lucid [55], average 2%) or higher (Dart [51], worst-case 16%) recirculation rate.
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(a) Single datapath. (b) 2 datapaths.

Fig. 9. FPGA insertion latency vs. load factor at different insertion rates (average over 100 runs).

5.3 FPGA prototype evaluation
Finally, we evaluate throughput and latency of our SPADA-qCHT FPGA implementation through
real FPGA experiments and clock cycle-accurate Verilog simulations. The latter enables better
visibility of latency degradation since it usually corresponds to a few clock cycles over the 960 ns
of the plain Open NIC Shell [2]. Note that SPADA is a passive monitoring system, meaning that
monitoring logic does not delay incoming packets or influence forwarding decisions. Thus, any
additional latency introduced by SPADA is due to (i) the arbiter that multiplexes input packets and
(ii) processing of recirculated packets.

Figure 9 shows CHT per-packet latency of the SPADA-qCHT Verilog simulation at maximum
throughput, varying the insertion rate, that is, how many packets trigger the insertion of a new key.
Note that the latency in the figure does not take into account the latency overhead of the Xilinx
Open NIC Shell used to host the system. With a single datapath, latency is ≈40 clock cycles (200 ns)
for a low CHT load factor, i.e., <65%. At 90% load, latency increases to more than 200 clock cycles
(1000 ns) in the worst case that every packet triggers a new CHT insertion. However, the latency
increase is much more limited at lower insertion rates, and becomes negligible when performing 1
insertion every 20 packets: note that in CAIDA and MAWI traces, worst case insertion rate is 1
every 38 packets. Using 2 datapaths (Figure 9b) we do not observe latency increase even at very
high load factors and insertion rates (4 datapaths not shown as results are similar).

Concerning throughput, our simulations show no throughput degradation and no-failure inser-
tions up to 85% load factor for a single datapath, and up to 89.0% for 2 datapaths, and 4 datapaths
also in the worst case of 1 insertion at every packet. This is mainly because we clock the system at
180 MHz, and the maximum throughput with minimum size packets (64B) at 100 Gbps is 144 Mpps
thereby leaving 36 Mpps for packet recirculations. To confirm the Verilog simulations we tested our
FPGA prototype with minimum-sized packets at maximum throughput. The experiments confirm
no throughput degradation, while the measured latency is 1160ns, that is 200 ns latency due to
SPADA-qCHT plus 960 ns overhead given by the Xilinx Open NIC Shell.

6 RELATEDWORK AND DISCUSSION
Several Flow-to-ID mapping techniques have been proposed in the literature [8, 47, 67]. Since
SPADA main goal is to compact the Sketch Data, we do not directly review them but we remark
that such techniques could be used in SPADA to further reduce the memory footprint.
In the context of cardinality estimation, HLL [24] and BeauCoup [15] are popular and efficient

methodologies proposed in the literature. HLL enhancements [33, 61] try to exploit sparsity to reduce
the data structure memory footprint. Unlike SPADA however, these approaches employ a counter-
sharing mechanism that affects the measurement accuracy. BeauCoup instead, performs distinct
counting through “coupons” collection in bit-vectors whose size trades off memory occupancy and
accuracy e.g., for𝑚=256 bits for each vector. BeauCoup error is comparable with HLL using the
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same memory while𝑚=32 increases the error by ≈3× for ≈70% less memory. Unlike BeauCoup,
SPADA provides significant memory saving without sacrificing accuracy. It is worth mentioning
that SPADA can also be applied to BeauCoup, as the bit-vectors are affected by sparsity (𝑝≈0.1).
Finally, SPADA can reduce the size of a series of other data structures in the context of cardinality
estimation, e.g., PCSA [25], KVM [7], and Fast-AGMS [17]. Similar considerations apply to the
quantile estimation use case. In particular, Circllhist [29] and KLL [35] feature sparse arrays similar
to DDSketch and can be implemented using SPADA representations. Other approaches rely on a
compact data representation by restricting the data collection to a subset of more relevant flows.
For instance, SQUAD [52] combines the problem of quantile estimation with the one of heavy
hitter detection, hence dynamically restricting quantile estimation only to the most frequent flows.
Instead, SPADA does not need to rely on a prediction mechanism and significantly reduces the
memory footprint without the drawback of restricting monitoring to a few flows. The key difference
between SPADA and the aforementioned approaches is that it relies on sparse data representation
to mitigate memory footprint. This leads to a generic technique that can be applied to a variety of
other use cases as summarized in Table 1.
Existing sparse representations are typically restricted to static data structures and include

well-known techniques such as Compressed Sparse Row, Coordinate Format, etc. Dynamic sparse
representations such as STINGER [21], AIM [60], and HORNET [12] have been recently proposed
in the context of graph and matrix representations for parallel processing units, e.g., GPU. How-
ever, such solutions are deployed on hardware where memory access is not constrained, unlike
programmable switches. Finally, sparse representation directly relates to Compressive Sensing [26].
In the context of sketching, NZE [31] uses Compressive Sensing to design specific sketches that can
approximately reconstruct the desired measurement, e.g., flow size estimation. Although NZE goal
is similar to SPADA, we note that the reconstruction complexity in our case is negligible, whereas
for NZE it exponentially increases with the number of flows.

Finally, while in this paper we focus on an FPGA-based implementation of SPADA, here we briefly
discuss its applicability to other systems. We argue that sparse representation memory savings
in CPU-based servers are limited (due to the amount of DRAM in such systems) but might help
reduce cache misses. The reduced memory footprint provided by SPADA is beneficial in systems
with plain memory hierarchy or stringent latency requirements, e.g., DRAM/HBM memories are
not allowed. SmartNICs and P4 programmable ASIC switches can benefit from SPADA to better
exploit their limited SRAM memory. The main issue of porting SPADA is Flow Map and Sketch
Data insertion. This can be realized in SmartNICs P4 targets that support the add_on_miss feature
proposed in the P4 Portable NIC Architecture [1], in programmable switches such as the NVIDIA
Spectrum series that provides stateful tables with data plane flow insertions and removals [57, 62]
or exploiting the stash with the batch recirculation mechanism proposed in this paper.

7 CONCLUSIONS
This paper presented SPADA, a Sparse Approximate Data Structure representation. SPADA is
a method to reduce the data plane memory occupancy of per-flow monitoring systems without
affecting accuracy. SPADA exploits the observation that, due to the skewed nature of network
traffic, only a handful of sketch counters are used for most flows. This leads to heavily underutilized
data structures in a number of monitoring use cases. SPADA has been designed to efficiently
represent such sparse data by only storing non-zero sketch buckets and relies on (q)CHT and on a
novel data structure pIBLT. We implemented SPADA on an FPGA-based SmartNIC using P4 and
performed extensive simulations and prototype experiments on real traces and synthetic workloads
for three popular monitoring use cases, achieving a memory reduction between 2× and 11× while
maintaining the same accuracy and introducing limited computational overhead.
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A STORAGE DATA STRUCTURES
A.1 Cuckoo Hash Tables
A CHT [44] can be seen as a dictionary with constant lookup time. It is composed of 𝑑 tables
𝑇0 . . .𝑇𝑑−1 with 2𝑟 buckets each, where 𝑑 hash functions ℎ0 . . . ℎ𝑑−1 are used to map each key 𝑥 to
the range [0, 2𝑟 − 1] such that 𝑥 is stored in one of the 𝑑 buckets𝑇𝑖 [ℎ𝑖 (𝑥)]. To insert an item 𝑥 , first,
an empty position is searched among the 𝑑 designated buckets. If a free cell is found, 𝑥 is inserted
there and the procedure ends. If not, a bucket𝑇𝑖 [ℎ𝑖 (𝑥)] is randomly chosen. Item 𝑥 is then inserted
in this bucket, replacing the old item 𝑦 previously stored there. If possible, 𝑦 is reinserted in one of
its other available 𝑑 buckets, i.e., 𝑇𝑗 [ℎ 𝑗 (𝑦)] for 𝑗 ≠ 𝑖 . Otherwise, the procedure is repeated until all
elements are stored.

Quotienting is a technique, originally proposed by Knuth [37], to reduce the memory needed to
store keys: consider a universe𝑈 comprising 2𝑢 elements of 𝑢 bits each and 𝑑 bijective functions
𝑚𝑖 : 𝑈 → 𝑈 ; we use the 𝑟 least significant bits of𝑚𝑖 (𝑥) as the hash function ℎ𝑖 (𝑥), and store as key
in 𝑇𝑖 [ℎ𝑖 (𝑥)] only the remaining 𝑢 − 𝑟 bits of𝑚𝑖 (𝑥), i.e., the quotient of𝑚𝑖 (𝑥). This method enables
unambiguous identification of the items stored in a cuckoo table while reducing the memory cost
of each item from 𝑢 to 𝑢 − 𝑟 . Note that quotienting provides significant savings when 𝑢 ≈ 𝑟 , i.e.,
when a significant fraction of the universe is stored in the qCHT. This is the case of SPADA’s Sketch
Data, as shown in Section 3.3.1.

A.2 Invertible Bloom Lookup Tables
IBLT is a data structure that enables storing key-value pairs with constant insertion time. An
IBLT [27] uses 𝑑 hashes to identify 𝑑 different buckets where to insert the keys. To solve key
collisions, each entry also stores a counter that keeps track of how many keys are in the same
bucket and the XOR of these keys. Hence, each bucket contains a field for the XORed keys, a
key counter for the number of colliding keys, and a value-store to sum all the values associated
with the XORed keys. Data inside the IBLT can be retrieved using a decoding procedure called
ListEntries that performs what is called a “peeling process”. Intuitively, the peeling process
operates by identifying the buckets where the key counter is equal to 1, i.e., only one value was
stored there, then removing that value from all the 𝑑 associated buckets. Hopefully, then other
buckets end up having their key counters equal to one, hence the process continues iteratively.
This procedure can retrieve all the <key,value> pairs if the load factor (i.e., the ratio between the
number of inserted keys and the number of overall available buckets) of the IBLT is below a certain
“peeling threshold”. In particular, the best achievable threshold according to [58] is around 0.82
(achieved with 𝑑 = 3). On the other hand, the pIBLT structure we introduce in Section 3.3.2 supports
a much higher threshold load of 0.97 (achieved with 𝑑 = 4) up to which all the <key,value> pairs
can be retrieved with high probability6.

6The <key,value> pairs are extracted from the pIBLT solving a linear system 𝐴 · x = b. For a load factor up to 0.97,
this system has a unique solution with high probability, i.e., 𝐴 being an𝑚 × 𝑛 matrix, the probability approaches 1 for
𝑚,𝑛 → ∞ [19, 20, 46].
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B ADDITIONAL RESULTS ON MEMORY SIZING
To complement the analysis in Section 3.4, we hereby provide additional plots showing the trade-offs
between memory size of the Sketch Data, number of flows under monitoring, number of buckets
and data sparsity for other configurations (Figure 10).
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Fig. 10. Relationship between data sparsity and memory requirements of SPADA data structures. Only Sketch
Data is shown as the size of the Flow Map does not change with sparsity and across solutions. All plots assume
bucket size 𝑠𝑐 = 8 bits. Additional configurations of all parameters are shown w.r.t. Figure 5.
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C FPGA RESOURCE REQUIREMENTS
Table 6 reports the hardware resource requirements for SPADA building blocks namely MAT,
CHT, qCHT, and pIBLT. Data structures are dimensioned for 214 entries in the Flow Map, each
with 216 buckets of 16 bits in the Sketch Data, assuming “virtual sketches” with𝑚 = 32 buckets
unless otherwise specified. The table reports the number of LUTs (expressed in thousands, K, and
in percentage, %) used as logic, those used as distributed RAMs (LUTRAM), and the number of
flip-flops and Block RAMs (BRAM). It is worth mentioning that due to the Vitis P4 framework
architecture, the MAT Table 6(top) is mainly mapped to the BRAM memory element and that, as
expected, the 5-tuple one requires more resources as it has a bigger flow key.

Table 6 (middle) details the FPGA hardware resources required by CHT and qCHT with 1, 2, and
4 datapaths, for𝑚 = 32. We recall that the qCHT is a CHT that stores a quotient instead of the
full key, hence saving a significant amount of memory as the table highlights. The extra memory
(mainly BRAM) for multiple datapaths is due to the load balancing and interconnection overhead.
This overhead is fixed, i.e., does not depend on the hash table size, and is also related to the specific
synthesizer optimizations. In particular, we observed that the memory required to synthesize a
single datapath diminishes by increasing the number of datapaths. With multiple datapaths, such
memory reduction may compensate for the extra memory required by the load balancer.

Table 6 (bottom) details the memory requirements for the pIBLT with 216 counters and a bitmap
𝐵 of size 219 bits, assuming “virtual sketches” with𝑚 = 32. It is worth mentioning that in this case
pIBLT occupies fewer resources with respect to qCHT. This is mainly due to the limited amount of
sketch counters𝑚. Increasing𝑚 would lead to a bigger bitmap B and hence bigger pIBLT.

Table 6. MAT, (q)CHT, and pIBLT resources utilization.
Datapaths Building Block LUT [K - %] LUTRAM [K - %] FF [K - %] BRAM [# - %]

- MAT (Src IP) 7.3 - 0.57 2.3 - 0.4 12.2 - 0.47 73 - 3.62
- MAT (5-tuple) 10.3 - 0.8 2.8 - 0.5 18.4 - 0.71 109 - 5.41

1 CHT 53.2 - 4.09 43.7 - 7.27 41.6 - 1.6 1 - 0.05
qCHT 37.3 - 2.87 29.3 - 4.88 32.2 - 1.24 1 - 0.05

2 CHT 57.8 - 4.44 43.3 - 7.21 58.2 - 2.32 3 - 0.15
qCHT 48.3 - 3.71 34.9 - 5.81 57.8 - 2.22 3 - 0.15

4 CHT 80 - 6.14 53.8 - 8.96 109.5 - 4.20 5 - 0.25
qCHT 70.9 - 5.44 46.2 - 7.70 108.8 - 4.17 5 - 0.25

- pIBLT 40.5 - 3.11 35.4 - 5.9 8.8 - 0.34 1 - 0.05
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